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Introduction

Modélisation et simulation en environnement/géophysique

Les problèmes rencontrés en modélisation de l’environnement, notamment géophysique
(océanographie, hydrologie, météorologie, pollution) ont un certain nombre de spécificités :

1. ils sont d’abord très fortement multi-disciplinaires couplant mécanique des fluides (en
clair les équations de Navier-Stokes pour décrire l’écoulement du fluide considéré : air
ou eau), physique (pour décrire le comportement microphysique, par exemple des par-
ticules), chimie ou biologie (pour l’évolution des espèces considérées), transfert radiatif
(les rayonnements terrestre et solaire), etc.

Un point clé est alors la nécessité d’effectuer des couplages de modèles, qui constituent
le point de développement de ces domaines.

2. la problématique des rétroactions (des “feedbacks”) est dans ce contexte cruciale, la
question étant de préciser jusqu’à quel point il est pertinent de coupler.

Un exemple caractéristique est fourni par l’interaction chimie/rayonnement/nuage (et
le rôle des aérosols dans l’atmosphère) qui est l’un des points encore largement ouverts
pour l’évaluation du changement climatique.

3. les problèmes traités sont souvent de très grande dimension (des centaines d’espèces
chimiques pour la chimie atmosphérique).

4. les problèmes sont multi-échelles, de nombreuses échelles étant à considérer simul-
tanément : par exemple, en chimie atmosphérique, les échelles temporelles liées aux
processus chimiques s’étendent sur plusieurs ordres de grandeurs (des espèces radica-
laires aux espèces stables), les échelles spatiales de quelques nanomètres (la formation
des aérosols) à l’échelle de l’écoulement géophysique.

Ceci conduit à de nombreuses difficultés d’ordre numérique.

5. de manière induite, la problématique de la paramétrisation des processus est un point
clé : comment représenter des processus définis à petite échelle (en temps et en espace)
dans des modèles dont le “grain” (spatial et temporel) est de fait relativement grossier ?

6. les milieux représentés sont très hétérogènes et de très grandes incertitudes existent
dans les données nécessaires à l’utilisation des modèles numériques (conditions initiales
de problèmes d’évolution, conditions aux limites, description des milieux géophysiques :
topographie, occupation du terrain, etc).

Dans ce contexte, le couplage entre modèles numériques et données observées, fournies
par des réseaux de mesures (terrestres mais aussi de plus en plus satellitaires - le
domaine de l’Observation de la Terre-) est une approche incontournable. On parle alors
d’assimilation de données, pour laquelle des approches méthologiques sont nécessaires.
Ce point est essentiel notamment pour des applications des modèles à la prévision.

De manière schématique, la modélisation dans ce domaine s’articule autour des trois
activités suivantes :

1. la modélisation physique à proprement parler, pour laquelle la problématique de la
paramétrisation sous-maille et la confrontation aux données de terrain sont cruciales ;



6

2. la simulation numérique des modèles construits ;

3. l’assimilation de données.

Ce cours s’insère dans un ensemble de trois cours et a pour objet le second thème. La
modélisation, avec l’exemple spécifique de la pollution atmosphérique, fait l’objet du cours
[47], l’assimilation de données du cours [46].

Dans un premier temps, le cours s’est focalisé sur les modèles de dispersion réactive de
traceurs (par exemple dans l’atmosphère ou dans un autre milieu). Cet exemple est spécifique
mais permet de balayer un grand nombre de méthodes largement génériques et utilisées dans
d’autres applications. L’objectif de ce cours est, de manière plus générale, de donner les
principaux éléments de calcul scientifique appliqués à la simulation numérique des problèmes
que l’on rencontre en environnement géophysique.

Organisation

Ce cours est organisé de la manière suivante.
Dans le chapitre 1, on présente (rappelle ?) le modèle de dispersion réactive.
Dans le chapitre 2, on étudie une classe de méthodes couramment utilisées dans ce do-

maine, les méthodes de séparation d’opérateurs (splitting).
Dans le chapitre 3, le traitement spécifique des termes réactifs (chimiques par exemple) est

abordé, notamment autour de la problématique des modèles raides (présentant une grande
dispersion des échelles de temps).

Enfin, la résolution des termes de transport (advection et diffusion) est traitée dans le
chapitre 4.
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3.1.3 Domaines de stabilité . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
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3.4 Réduction de modèles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
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Chapitre 1

Equation de dispersion réactive

L’objectif de ce chapitre est de rappeler brièvement les équations de dispersion réactive
de traceurs dans un milieu géophysique (air, eau).

On rappelle l’équation de dispersion réactive dans la section 1 en détaillant les processus
d’advection, de diffusion et de réactions. Un point clé est l’hypothèse de dilution qui consiste
à découpler les équations de la dynamique du fluide de celles de l’évolution des traceurs.

Les principaux processus sont ensuite classifiés dans la section 2 (c’est ce qui les rattachera
à des familles d’algorithmes numériques).

Enfin, on conclut en discutant brièvement du choix des méthodes de discrétisation spa-
tiale.

1.1 Equations de dispersion réactive

1.1.1 Hypothèse de dilution

On cherche à décrire dans un milieu donné (atmosphère, océan, fleuve) la dispersion d’un
jeu d’espèces chimiques (ou biologiques), supposées réagir entre elles.

En toute rigueur, l’évolution du système couplé (fluide+traceurs) est donnée par les
équations de Navier-Stokes réactives. On fait néanmoins de manière classique une hypothèse
de dilution qui consiste à découpler d’une part la dynamique du fluide, d’autre part les
concentrations de traceurs. Ceci revient notamment à négliger dans l’équation d’évolution
d’énergie interne (ou de température) la contribution dûe aux réactions chimiques et à figer
l’interaction matière/rayonnement. Par exemple, dans le cas de l’atmosphère, la première
approximation est bien vérifiée dans la troposphère alors que la seconde revient à négliger
un moteur clé de la dynamique atmosphérique.

Dans ce cas de figure, les champs dynamiques (vent, diffusion, température, humidité
de l’air pour le cas atmosphérique) sont donc calculés indépendamment ou paramétrisés,
et sont utilisés comme des données connues dans l’équation de dispersion pour les traceurs
considérés.

Il est à noter pour finir qu’une telle hypothèse n’est évidemment plus valable pour des
systèmes où le couplage chimie/dynamique est beaucoup plus important (par exemple en
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10 Chapitre 1 - Dispersion réactive

combustion). Les équations de Navier-Stokes réactives doivent alors être traitées, ce qui
dépasse le cadre de ce cours et fait appel pour partie à d’autres méthodes.

1.1.2 Equations d’advection-diffusion-réaction

Dans le cadre d’une hypothèse de dilution, l’évolution des traceurs indicés par i obéit
alors à un système d’Equations aux Dérivées Partielles donné par :

∂ci

∂t
+ div(V (x, t)ci) = div(Kmolec∇ci) + χi(c, T (x, t), t) + Si(x, t) (1.1)

où x et t désignent respectivement les coordonnées d’espace et de temps, c est le vecteur des
concentrations d’espèces (indicées par i), V (x, t) est le champ de vitesse du fluide, Kmolec

est la matrice de diffusion moléculaire (a priori non diagonale, du fait de la diffusion inter-
moléculaire), T (x, t) est le champ de température.

Si(x, t) est le terme source pour l’espèce i, qui modélise le cas échéant l’émission par source
fixe. Dans le cas atmosphérique (figure 1.1), ceci correspond typiquement à des émissions
par cheminées d’usine ; dans le cas hydrologique, à une source ponctuelle de pollution.

Enfin, χi désigne le taux de production chimique de l’espèce i, sur lequel on reviendra
plus spécifiquement par la suite.

Pour terminer, l’équation précédente n’est en réalité valable que dans le cas d’un fluide
incompressible (densité ρ constante). Dans le cas général, la densité du fluide porteur vérifie
l’équation de continuité :

∂ρ

∂t
+ div(ρV ) = 0 (1.2)

et la “bonne” variable pour le traceur est son rapport de mélange que l’on notera mi = ci/ρ,
dont l’évolution est donnée par :

∂mi

∂t
+ V · ∇mi =

1

ρ
div(Kmolec∇(ρmi)) +

χi(ρm, T (x, t), t) + Si(x, t)

ρ
(1.3)

1.1.3 Modèles moyens

En réalité, cette équation d’évolution, si elle est valide au niveau “microscopique”, n’est
pas applicable telle quelle pour des écoulements turbulents. Ceux-ci peuvent notamment être
caractérisés par une grande disparité des échelles spatiales : par exemple, pour la cas d’une
turbulence d’origine dynamique (cisaillement de vitesse -typiquement le cas d’une couche
limite dynamique), l’analyse de Kolmogorov donne un rapport d’échelle entre la plus petite
échelle caractéristique (l) et la plus grande (L) en fonction du nombre de Reynolds (Re)
selon :

L

l
' Re3/4 (1.4)

Pour des écoulements fortement turbulents (Re À 1), il est évidemment impossible de
simuler l’ensemble des échelles en 3 dimensions. On a alors recours de manière classique à
des approches de moyennisation.
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Fig. 1.1 – Processus décrits dans un modèle de Chimie-Transport.
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En omettant de préciser la définition rigoureuse de l’opérateur de moyenne (en un sens
spatial, en un sens ergodique, avec ou sans une pondération par la densité -moyenne de
Favre-...), on suppose donc à présent que les champs étudiés se décomposent selon :

Ψ = 〈Ψ〉+ Ψ
′

(1.5)

avec 〈Ψ〉 une grandeur moyenne et Ψ
′

une fluctuation. Parmi les principales propriétés
“demandées” à l’opérateur de moyenne, on retiendra qu’il commute avec les opérateurs de
dérivation (en temps et en espace) et que

〈
Ψ
′〉

= 0.
De manière directe, une telle décomposition appliquée à l’équation précédente pour les

traceurs c et pour le champ de vitesse V conduit après moyennisation à l’équation :

∂〈ci〉
∂t

+ div(〈V (x, t)〉 〈ci〉) = div(Kmolec∇〈ci〉) + 〈χi(c, T (x, t), t)〉+ 〈Si(x, t)〉 − div(
〈
c
′
iV

′
〉
)

(1.6)
Il est direct de remarquer que les termes linéaires sont transposés tels quels dans l’équation

moyennée. Les termes non-linéaires (en l’occurrence quadratiques) font apparâıtre des corrélations
entre variables (la moyenne de produits de fluctuations). Le problème de la fermeture des
équations moyennées revient alors à exprimer ces corrélations en fonction des grandeurs
résolues (les valeurs moyennes).

Revenons sur les deux principaux termes à fermer dans l’équation précédente :

1. La moyennisation de l’équation de continuité pour l’espèce i conduit à l’introduction
d’un terme de flux turbulent, non spécifié, associé au terme d’advection : div

〈
c
′
iV

′〉
.

Le problème de la fermeture des équations est résolu de manière classique à l’aide de
la théorie du gradient (ou théorie K) qui revient à exprimer le flux turbulent d’une
quantité advectée comme inversement proportionnel au gradient de la valeur moyennée.
Pour un champ Ψ, la paramétrisation est donc du type :

〈
Ψ′V

′
〉

= −KΨ
turb(x, t)∇〈Ψ〉 (1.7)

avec KΨ
turb la diffusion turbulente dépendant de l’espace et du temps (en pratique

donnée en fonction des champs dynamiques et de leurs gradients).

Il est à noter que cette paramétrisation appliquée à la concentration ci ou à la fraction
massique mi ne conduit pas à la même fermeture. Comme l’équation de continuité
moyennée s’écrit usuellement sous la forme :

∂〈ρ〉
∂t

+ div(〈ρ〉 〈V 〉) = 0 (1.8)

il est plus cohérent d’appliquer la paramétrisation à la fraction massique selon :

〈
m
′
iV

′
〉

= −Kturb∇
〈
m
′
i

〉
(1.9)

Avec ci = ρmi, on fait l’approximation usuelle :

c
′
iV

′
= 〈ρ〉m′

iV
′
+ 〈mi〉 ρ′iV

′ ' 〈ρ〉m′
iV

′
(1.10)



1.1. EQUATIONS DE DISPERSION RÉACTIVE 13

La paramétrisation donne alors pour la concentration :

〈
c
′
iV

′
〉

= −〈ρ〉Kturb∇
〈
c
′
i

〉

〈ρ〉 (1.11)

Pour le fluide (l’air), supposé non réactif, l’équation d’advection moyennée redonne
l’équation de continuité (1.8) avec ci = ρ, ce qui n’aurait pas été le cas en appliquant
directement la paramétrisation à la concentration. On aurait alors fait apparâıtre un
membre de droite dans l’équation de continuité moyennée.

Notons que la diffusion turbulente est supposée être la même pour toutes les espèces,
la diffusion inter-espèces n’étant pas prise en compte ; autrement dit, la matrice Kturb

est diagonale.

En pratique, on fait en général l’approximation Kturb À Kmolec. Par exemple, pour
le cas atmosphérique, la diffusion est uniquement turbulente en dehors d’une couche
laminaire à proximité du sol, ce qui justifie cette simplification.

2. Le processus de moyennisation conduit de même, en toute rigueur, à un problème de
fermeture pour la chimie non linéaire.

A une réaction bimoléculaire de réactants notés symboliquement Xi et Xj est associée
une production chimique proportionnelle à (voir annexe) :

〈cicj〉 = 〈ci〉 〈cj〉+
〈
c
′
ic
′
j

〉
(1.12)

où le terme de corrélation
〈
c
′
ic
′
j

〉
est inconnu.

Ces termes sont habituellement négligés et on fait donc dans l’équation de dispersion
l’approximation (dite parfois du réacteur homogène -well stirred tank reactor-) :

〈χ(c)〉 ' χ(〈c〉) (1.13)

Une condition de validité est typiquement que les temps caractéristiques de la chimie
sont beaucoup plus grands que ceux associés aux processus d’homogénéisation. No-
tons que le terme de corrélation négligé correspond à ce que l’on appelle un terme de
ségrégation :

〈cicj〉 = 〈ci〉 〈cj〉 (1 + Is) , Is =

〈
c
′
ic
′
j

〉

〈ci〉 〈cj〉 (1.14)

avec Is l’intensité de ségrégation (dont on vérifie immédiatement qu’elle vérifie Is ≥
−1).

Si deux espèces ne sont pas corrélées, Is = 0. Dans le cas contraire, l’hypothèse de
réacteur homogène peut conduire à surestimer ou sous-estimer la production chimique
effective à l’échelle du modèle. Le cas classique est, pour l’application atmosphérique,
donné par la réaction clé pour la pollution photochimique

NO + O3 → NO2 + O2 (1.15)

La situation classique est que le monoxyde d’azote NO est émis en limite inférieure
de la couche limite (environ 90% des émissions d’oxydes d’azote sous cette forme),
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tandis que l’ozone O3, espèce à durée de vie plus longue, transportée et formée sur de
longues distances domine au sommet de la couche limite. On va donc typiquement se
trouver dans la situation où Is < 0 et l’hypothèse homogène va revenir à surestimer
la production effective par cette réaction chimique (en réalité, NO et O3 ne sont pas
vraiment en contact de manière homogène ...).

L’approximation n’est en particulier plus vérifiée pour les réactions les plus rapides au
voisinage des sources fixes.

Sur la base de ces hypothèses simplificatrices, l’équation de dispersion moyennée devient
donc :

∂〈ci〉
∂t

+ div(〈V (x, t)〉 〈ci〉) = div(〈ρ〉Kturb∇〈ci〉
〈ρ〉 ) + χi(〈c〉 , 〈T (x, t)〉 , t) + 〈Si(x, t)〉 (1.16)

Dans toute la suite, on omettra de noter 〈Ψ〉 pour alléger les notations et on écrira Ψ.

1.1.4 Conditions aux limites

A cette équation d’Advection-Diffusion-Réaction sont associées des conditions initiales
et des conditions aux limites.

Illustrons des conditions aux limites classiques rencontrées dans le cas atmosphérique.
Une hypothèse usuelle revient à considérer que les phénomènes d’advection par le vent sont
prépondérants horizontalement alors que les phénomènes de transport vertical sont dominés
par la diffusion turbulente (brassage convectif de type Rayleigh-Bénard). Les conditions
aux limites latérales sont donc les conditions aux limites classiques pour des problèmes
hyperboliques (vent entrant), alors que les conditions au sol et au sommet du domaine
considéré sont les suivantes, z désignant la coordonnée verticale :

1. Au sol (z = 0) :

−Kturb(x, t)
∂ci

∂z
= Ei(x, t)− vi

depci (1.17)

Ei(x, t) est le terme d’émission surfacique de l’espèce i : il dépend du type de scénario
d’émission choisi (rural, urbain, régional) et comprend une part d’origine anthropique
liée au trafic routier et une part d’origine naturelle.

vi
dep correspond à la vitesse de dépôt sec et est paramétrisée, par espèce chimique, en

fonctions des conditions météos en couche limite et du type de sol (LUC : Land Use
Coverage), à chaque type de sol correspondant une rugosité.

Mathématiquement parlant, ceci correspond à une condition de Robin.

2. En sortie de couche limite (z = zH) :

−Kturb(x, t)
∂ci

∂z
= 0 (1.18)

qui correspond à la condition usuelle d’atmosphère libre. Mathématiquement parlant,
ceci correspond à une condition de Neumann.
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c

x

t=0 t>0

Fig. 1.2 – Advection.

1.2 Classification des processus

L’objectif de cette section est de rappeler brièvement la classification mathématique des
processus qui ont été décrits dans l’équation de dispersion. L’intérêt d’une telle classification
est par la suite de pouvoir recourir aux schémas numériques adéquats. En pratique (voir
chapitre 2), on utilise des méthodes de séparation d’opérateurs qui reviennent à résoudre de
manière découplée les processus décrits.

1.2.1 Advection

L’advection par le champ de vitesse V est donnée par :

∂ci

∂t
+ div(V (x, t)ci) = 0 (1.19)

Cette équation relève de la classe des problèmes hyperboliques linéaires (figure 1.2).
Un point clé associé à ces systèmes est bien sûr la vitesse de propagation de l’information

(liée au champ de vitesse V ). On se réfère au chapitre 4 pour les problématiques classiques
associées (diffusion numérique, conditions de stabilité, ...).

1.2.2 Diffusion

L’équation de diffusion turbulente est donnée (pour une densité ρ constante) par :

∂ci

∂t
= div(Kturb∇ci) (1.20)

Cette équation relève de la classe des problèmes paraboliques (figure 1.3). Les propriétés de
cette équation (caractère “lissant”) font que son intégration n’est pas en général un enjeu
numérique en soi.
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c

x

t=0 t>0

Fig. 1.3 – Diffusion.

1.2.3 Réaction

Les réactions chimiques sont décrites par :

dci

dt
= χi(c, T (x, t), t) (1.21)

qui est un système d’Equations Différentielles Ordinaires (EDO). On se réfère au chapitre
3 pour les problématiques associées (systèmes “raides” -stiff-, schémas explicites/implicites,
stabilité et positivité, réduction de modèles, etc).

Il est à noter que les processus d’advection et de diffusion ne couplent pas les espèces
chimiques. Autrement dit, ces processus peuvent être résolus de manière parallèle sur toutes
les espèces. A l’inverse, le terme réactif couple les espèces mais peut être résolu de manière
parallèle sur toutes les mailles.

1.3 Discrétisation spatiale

Schématiquement, le modélisateur va avoir le choix entre les deux grandes classes usuelles
de méthodes de discrétisation numérique :

1. les méthodes de type “éléments finis” qui reviennent à chercher les solutions c(x, t)
sous la forme

∑
i c̃i(t)ui(x) avec (ui) une base de fonctions prédéfinies dans un espace

fonctionnel donné (typiquement des fonctions polynômiales à support spatial localisé).

Les inconnues sont alors les composantes c̃i(t) qui peuvent être obtenues par une for-
mulation faible de l’équation de départ. Modulo une troncature (via une projection
dans un sous-espace de dimension finie), cette approche a le mérite de donner un cadre
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Fig. 1.4 – Nesting autour d’une source de pollution : imbrication de deux maillages (un
grossier et un fin).

“fonctionnel” clair aux solutions obtenues. D’autre part, la prise en compte des singu-
larités de l’écoulement (comme la présence d’une source par exemple autour de laquelle
on souhaiterait avoir un raffinement de la solution) est aisée.

2. les méthodes de type “différences finies/volumes finis”, plus simples à mettre en oeuvre
(les variables discrétisées sont des valeurs de concentrations en des points de maillage
ou des valeurs moyennes sur des mailles) mais dont l’inconvénient est la prise en compte
des singularités. Une approche couramment utilisée est fournie par les méthodes d’im-
brication de maillage (nesting) qui consistent à calculer la solution sur une hiérarchie
de maillage associés à des domaines imbriqués (du plus fin autour de la source au
plus grossier à grande échelle, figure 1.4), l’échange d’information entre les maillages
se faisant selon plusieurs méthodes possibles.

De manière générale, la plupart des codes actuels du domaine ont recours à la méthode
des différences finies/volumes finis, qui est celle que nous avons donc choisi de présenter.

1.4 Annexe : description du terme réactif

On détaille brièvement le terme de production chimique χ dans l’équation de dispersion
(1.21).



18 Chapitre 1 - Dispersion réactive

1.4.1 Définitions générales

On se placera pour simplifier dans le cadre d’un modèle en phase gazeuse. Le terme
de production chimique χ est alors donné pour une cinétique chimique générale 1 (pour ne

espèces et nr réactions) par :
χ(c, T, P ) = Sω(c, T, P )

où S est la matrice de stœchiométrie de dimension ne×nr et ω est le vecteur des nr vitesses
de réaction ; T et P désignent respectivement la température et la pression.

Une réaction élémentaire (c’est à dire qui a lieu effectivement entre espèces présentes
simultanément) r est la donnée d’un jeu de coefficients stœchiométriques pour les réactants
(s−ir)i=1,ne et pour les produits (s+

ir)i=1,ne . Elle est définie par le symbole :

ne∑
i=1

s−irXiÀ
ne∑
i=1

s+
irXi

où Xi est le symbole de l’espèce i. Notons que, du fait de la réversibilité des processus
collisionnels, une réaction élémentaire est toujours réversible.

Les coefficients stœchiométriques globaux pour la réaction r sont donnés par :

sir = s+
ir − s−ir

La vitesse de réaction dans le sens direct (respectivement indirect) ω+
r (respectivement ω−r )

est donnée par la loi d’action de masse selon :

ω+
r (c, T, P ) = k+

r (T, P )
i=ne∏
i=1

c
s+
ir

i

(respectivement :

ω−r (c, T, P ) = k−r (T, P )
i=ne∏
i=1

c
s−ir
i )

où k+
r (T, P ) et k−r (T, P ) désignent les constantes cinétiques directe et indirecte de la réaction.

La vitesse de réaction est alors donnée par :

ωr = ω+
r − ω−r

En règle générale, la constante directe est donnée par la loi (empirique) d’Arrhénius :

k+
r (T, P ) = ATB exp(− Ea

RT
)

avec A la constante préexponentielle, B le facteur exponentiel et Ea l’énergie d’activation ;
R est la constante des gaz parfaits.

La loi de Van’t Hoff donne à partir de considérations d’équilibre thermodynamique la
valeur de la constante inverse selon :

k+
r (T, P )

k−r (T, P )
= Keq

r (T, P )

où Keq
r (T, P ) est la constante d’équilibre de la réaction.

1On néglige pour le moment toute dépendance directe en temps via les phénomènes de photolyse.
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1.4.2 Forme production-consommation

Il est aisé de vérifier, en séparant les réactions dans lesquelles Xi joue respectivement le
rôle de réactant et de produit, que le terme de production pour la concentration ci peut se
mettre sous la forme dite communément de “production-consommation” :

χi(c) = Pi(c)− Li(c)ci (1.22)

où Pi et Li sont respectivement les termes (positifs ou nuls) de production et de consomma-
tion. Sous forme vectorielle :

χ(c) = P (c)− L(c)c (1.23)

où P est le vecteur de production et L la matrice diagonale (positive ou nulle) de consom-
mation. Les conditions thermodynamiques (T, P ) sont ici implicitement fixées.

Cette forme est abondamment utilisée pour la définition de schémas numériques spécifiques
à la chimie (chapitre 3).

1.4.3 Quelques remarques complémentaires

Avec le formalisme précédent, on définit usuellement le temps caractéristique de l’espèce
i comme :

τi(c) =
1

Li(c)
(1.24)

qui dépend d’une manière générale des concentrations c. On reviendra sur une définition plus
précise dans le chapitre 3.

On peut se référer à [60] pour l’étude mathématique des équations de la cinétique chi-
mique. Un point essentiel (et pour le moins attendu) est la positivité des concentrations
chimiques. L’examen de (1.22) montre en effet que lorsque la concentration ci s’annule, sa
dérivée en temps devient positive :

Pi(c) ≥ 0

Ceci permet de conclure formellement que ci ne peut pas devenir négative. En réalité, l’ar-
gument est un peu plus “fin” et on se réfèrera à [60] (où l’on utilise l’analycité de c(t)).

1.4.4 Vers le couplage avec d’autres phases de la matière

En réalité, se limiter à la phase gazeuse est souvent trop restrictif. Par exemple, dans
le cas de la chimie atmosphérique, les mécanismes en phase hétérogène (à la surface de
cristaux de glace dans les nuages stratosphériques polaires) jouent un rôle clé pour expliquer
les cycles de catalyse de destruction de l’ozone stratosphérique). Pour ce qui concerne la
chimie troposphérique :

– de nombreux phénomènes ont lieu en phase aqueuse (dans les nuages),
– la phase condensée de la matière (solide ou liquide) peut interagir avec la phase gazeuse

et a son intérêt propre (suivi des aérosols ou particules pour leur impact sur la santé
ou la modification des propriétés radiatives et photolytiques de l’atmosphère).
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Diffusion aqueuse

 Diffusion gazeuse Transfert interfacial

Chimie aqueuse

Fig. 1.5 – Transfert de masse au niveau d’une goutte de nuage

1.4.4.1 Modèle en phase aqueuse

Lorsque se produisent des épisodes nuageux, un transfert de masse a lieu entre la phase
gazeuse des espèces et la phase aqueuse (les espèces dissoutes au sein des gouttes de nuages).
Pour décrire ces processus, on a alors typiquement à prendre en compte (figure 1.5) :

– la diffusion moléculaire des espèces gazeuses vers les gouttes,
– le transfert interfacial à travers la surface de la goutte,
– la diffusion moléculaire des espèces dissoutes au sein des gouttes,
– les réactions chimiques en phase aqueuse.
Les trois premiers phénomènes relèvent du domaine de la microphysique. Pour mémoire,

une goutte de nuage a une taille caractéristique de l’ordre de quelques dizaines de mi-
cromètres. Ces phénomènes sont importants pour le suivi de l’ozone régional, car ils peuvent
constituer des puits d’ozone en phase gazeuse.

1.4.4.2 Aérosols et particules

On appelle aérosol la phase condensée de l’atmosphère, sous forme liquide ou solide. Les
aérosols sont importants :

– pour eux-mêmes (impact sanitaire, surtout des nanoparticules) ;
– par la modification des propriétés radiatives de l’atmosphère (exemple : effet direct

pour l’effet de serre) ;
– par l’interaction avec la phase gazeuse (au même titre que les gouttes de nuage) par

les processus de condensation/évaporation ;
– par la modification des propriétés de formation des nuages par condensation de la va-

peur d’eau sur des particules, les noyaux de condensation (CCN : Cloud Condensation
Nuclei) ; on parle alors d’effet indirect pour l’effet de serre.
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CONDENSATION/EVAPORATION

COAGULATION

NUCLEATION

PARTICLE SIZE DISTRIBUTION

PHORETIC VELOCITIES

Fig. 1.6 – Les principaux processus affectant la dynamique des aérosols.

Il est hors de question ici de décrire la physique des aérosols (figure 1.6). On se contentera
pour fixer les idées de préciser quelques points clés :

– la distribution en fonction de la taille des aérosols (supposés sphériques) est essentielle,
car elle conditionne le dépôt des aérosols ;

– l’évolution de cette distribution est donnée par des modèles complexes, pour les-
quels la question du renseignement des données (conditions initiales et paramètres)
est déterminante.
Si on appelle n(v, t) la distribution d’un aérosol fixé en fonction du volume v à l’instant
t, son évolution est donnée par l’équation de la dynamique des aérosols (GDE : General
Dynamics Equation) :

∂n

∂t
=

1

2

∫ v

v0

K(v − q, q)n(v − q, t)n(q, t)dq − n(v, t)

∫ ∞

v0

K(q, v)n(q, t)dq

︸ ︷︷ ︸
coagulation

(1.25)

− ∂

∂v
(I(v)n(v, t))

︸ ︷︷ ︸
condensation-évaporation

+ J0(v)δv0(v)︸ ︷︷ ︸
nucléation

+ S(v)−R(v)︸ ︷︷ ︸
puits et sources

où K(., .) est le noyau de coagulation (symétrique) et I(v) est le taux de croissance par
condensation et évaporation, qui est “piloté” par la thermodynamique. La coagulation décrit
les phénomènes d’agrégation entre aérosols alors que les processus de condensation-évaporation
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décrivent le gain ou la perte d’un monomère (l’aérosol de taille la plus petite) sous l’influence
des conditions thermodynamiques. La nucléation précise les flux de création du plus petit
aérosol pris en compte dans cette description continue (il est de volume v0).

L’obtention de ce modèle continu à partir de la description initialement discrète de la
population d’aérosols permet de définir exactement le noyau de nucléation.

Remarquons que ce modèle combine donc à la fois des termes intégro-différentiels (la
coagulation) et hyperboliques (condensation-évaporation). C’est l’ensemble de ces termes
qui jouent alors le rôle de terme réactif χ, ce qui rend d’autant plus difficile la résolution
numérique ...



Chapitre 2

Méthodes de séparation d’opérateurs

Comme on l’a vu, l’équation de dispersion réactive met en jeu plusieurs processus (advec-
tion, diffusion, termes de pertes, termes de gain, termes réactifs, etc). De manière usuelle, l’en-
semble de ces processus n’est pas résolu de manière couplée et des méthodes de “découplage”
sont en pratique mises en oeuvre : on parle alors de méthode de séparation d’opérateurs (ope-
rator splitting method) ou de méthode des pas fractionnaires (fractional step method).

L’objet de ce chapitre est de présenter ces méthodes et l’analyse de leur comportement,
notamment en terme d’évaluation des erreurs induites par le découplage.

On peut se référer par exemple à [27, 62] pour une présentation classique de ces méthodes.

2.1 Motivations

2.1.1 Notations

Dans le cas d’une densité constante (pour simplifier), l’équation de dispersion (à laquelle
il faut bien entendu ajouter les conditions aux limites) :

∂ci

∂t
+ div(V (x, t)ci) = div(K(x, t)∇ci) + χi(c, T (x, t), t) + Si(x, t) (2.1)

peut être vue de manière générale comme une équation d’évolution :

dc

dt
=

i=np∑
i=1

fi(c) (2.2)

mettant en jeu plusieurs processus fi(c), en nombre np. Dans le cas du modèle d’advection-
diffusion-réaction, on a bien entendu :

f1(c) = −div(V (x, t)c) , f2(c) = div(K(x, t)∇c) , f3(c) = χ(c, T (x, t), t) (2.3)

Les processus fi(c) sont donc à voir comme des opérateurs agissant sur les fonctions c(., t) de
l’espace dans le cas du modèle continu. Après discrétisation spatiale éventuelle, ils seraient
directement représentés par des fonctions agissant sur les vecteurs des valeurs ponctuelles de
c(., t) (dans le cas des différences finies par exemple).

23
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2.1.2 Méthode de séparation d’opérateurs versus résolution couplée

Sur le plan de la physique, l’ensemble des processus est bien entendu couplé et, en toute
rigueur, les algorithmes numériques de résolution devraient résoudre de manière couplée les
processus pris en compte.

Pour au moins deux raisons, une approche alternative de séparation des opérateurs est
couramment mise en oeuvre :

1. en terme de modularité des codes informatiques résultants, on peut vouloir préférer uti-
liser une approche ne mettant en oeuvre que la résolution de processus pris indépendamment
les uns des autres, ie :

dc

dt
= fi(c) , c(0) = c0 (2.4)

Si on appelle c(i)(∆t, c0) la solution du système précédent au temps t = ∆t (à voir
également comme la sortie de l’appel d’une routine de résolution de ce système, c0

étant la donnée d’entrée), les codes informatiques ne mettent alors en oeuvre que la
résolution séquentielle de système du type (2.4). Un algorithme typique de résolution
est alors pour une intégration sur un intervalle de temps [0, T = N∆t] :
DO n=1,N
c=cn

DO i=1,np

c=c(i)(∆t, c)
ENDDO
cn+1 = c
ENDDO

Un avantage clair est la grande modularité : l’ajout d’un nouveau processus n’affecte
pas l’ensemble du programme et revient à ajouter une nouvelle “brique” résolvant un
système de type (2.4) ; un processus peut être récupéré ou substitué auprès d’une autre
équipe via l’incorporation de la brique concernée, etc.

2. en terme numérique, la résolution couplée peut également générer de nombreuses dif-
ficultés.

Les processus concernés peuvent avoir des comportements qualitatifs diamétralement
opposés et les contraintes algorithmiques qui en résultent peuvent être difficiles à conci-
lier : dans le cas découplé, on peut faire le choix de l’algorithme “optimal” pour chaque
processus sans se soucier des autres processus.

De plus, dans le cas des modèles de dispersion réactive, le terme réactif se caractérise
fréquemment par une grande complexité et une grande dimension (de nombreuses
espèces concernées : dans le cas de la chimie atmosphérique, des centaines d’espèces
chimiques traces sont ainsi modélisées). Une implication est alors souvent la grande dis-
persion des échelles de temps concernées (les temps caractéristiques couvrant plusieurs
ordres de grandeurs). En anticipant sur la suite (chapitre 3 consacré à l’intégration en
temps), ceci conduit à préférer des méthodes implicites d’intégration en temps. Dans le
cas d’une méthode des lignes (Method of Lines, MOL : on discrétise d’abord en espace
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puis en temps), une résolution couplée conduit alors à résoudre un système implicite
de la forme :

cn+1 − cn

∆t
=

i=np∑
i=1

fi(cn+1)
∆
= F (cn+1) (2.5)

où l’on notera que les processus ont été évalués au temps tn+1 (cn est une approximation
numérique de c(tn), tn+1 = tn+∆t). L’équation algébrique en cn+1 doit alors être résolue
et l’on verra que ceci passe par l’inversion de la matrice jacobienne de F . La taille de c
est ici donnée par le produit du nombre de mailles (disons nm) par le nombre d’espèces
chimiques (disons ne) : la complexité est alors de l’ordre de O([ne × nm]3).

Dans le cas découplé, l’approche implicite ne sera utilisée que pour le processus présentant
une grande dispersion d’échelles en temps (en l’occurence le terme réactif). On n’a alors
plus à inverser une matrice que pour la résolution de ce processus (pour une variable de
dimension ne), dans les nm mailles concernées. En supposant que cette étape est dimen-
sionnante sur le plan calcul, la complexité est alors de nm×O(n3

e) qui est évidemment
moindre que celle de l’approche couplée.

2.2 Analyse classique des méthodes de séparation d’opérateurs

dans le cas linéaire

La contrepartie des méthodes de séparation d’opérateurs est bien entendu l’erreur induite
par le découplage des opérateurs. L’analyse se fait usuellement sur le cas linéaire que l’on
présente dans un premier temps.

Dans toute la suite, on suppose obtenue la solution numérique cn à l’itération n du
splitting (ie après un temps n∆t, ∆t étant ce que l’on appelle classiquement le pas de temps de
splitting). On cherche alors à obtenir une approximation de cn+1 après intégration découplée
des processus sur un intervalle de temps de longueur ∆t. Les processus sont supposés être
intégrés de manière exacte, éventuellement à l’aide de pas de temps inférieurs à ∆t (on parle
alors de sous-cyclage).

2.2.1 Méthode du premier ordre

On va considérer le problème d’évolution donné par deux processus linéaires représentés
par A et B (des matrices dans le cas de la dimension finie après discrétisation) :

dc

dt
= Ac + Bc , c(0) = cn (2.6)

Soit ∆t l’intervalle de temps de splitting. La méthode de séparation la plus naturelle est
définie par les deux étapes successives :

1. Etape 1 de résolution du processus A :

dc∗

dt
= Ac∗ sur [0, ∆t] , c∗(0) = cn (2.7)
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2. Etape 2 de résolution du processus B :

dc∗∗

dt
= Bc∗∗ sur [0, ∆t] , c∗∗(0) = c∗(∆t) (2.8)

La valeur de c(∆t) est alors approchée par c∗∗(∆t). On appellera pour des raisons évidentes
(A−B) cet algorithme.

L’analyse classique de l’erreur induite par la séparation des opérateurs est effectuée à
partir des solutions exponentielles en effectuant un développement asymptotique par rapport
à l’intervalle de séparation ∆t. Ici, la solution exacte est bien entendu :

cn+1 = exp((A + B)∆t)cn (2.9)

alors que la solution calculée à l’aide de la méthode (A−B) est

cA−B(∆t) = exp(B∆t) exp(A∆t)cn (2.10)

L’erreur locale est alors :

le = cA−B(∆t)− cn+1 =
AB −BA

2
∆t2cn + O(∆t3) (2.11)

après développement des exponentielles. On a donc une méthode localement d’ordre 2 (glo-
balement d’ordre 1) dans le cas général. Pour des opérateurs A et B qui commutent, il est
clair que l’erreur de splitting est nulle.

2.2.2 Méthodes du second ordre

Il est bien sûr aisé de monter en ordre en notant que, pour le cas linéaire, le terme
dominant de l’erreur est de signe opposé pour la méthode (B−A) (obtenue par inversion de
la séquence de résolution). Si l’on définit :

cn+1 =
cA−B(∆t) + cB−A(∆t)

2
(2.12)

on a une solution d’ordre supérieur. Un inconvénient est le coût calcul, cet algorithme
nécessitant la résolution de 4 processus élémentaires.

Strang ([48]) a proposé de symétriser la méthode précédente avec les trois étapes sui-
vantes :

1. Etape 1 de résolution de B sur [0, ∆t/2] :

dc∗

dt
= Bc∗ sur [0,

∆t

2
] , c∗(0) = cn (2.13)

2. Etape 2 de résolution de A sur [0, ∆t] :

dc∗∗

dt
= Ac∗∗ sur [0, ∆t] , c∗∗(0) = c∗(

∆t

2
) (2.14)
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3. Etape 3 de résolution de B sur [∆t/2, ∆t] :

dc∗∗∗

dt
= Bc∗∗∗ sur [0,

∆t

2
] , c∗∗∗(0) = c∗∗(∆t) (2.15)

la valeur cn+1 étant approchée par c∗∗∗(
∆t

2
).

On nommera sans surprise (B − A − B) cette méthode de séparation, dont un calcul
immédiat permet de s’assurer qu’elle est bien d’ordre 3 localement (2 globalement) : la
solution est de la forme

cB−A−B(∆t) = exp(B∆t/2) exp(A∆t) exp(B∆t/2)cn (2.16)

et un développement limité donne :

cB−A−B(∆t) ' (I+B∆t/2+B2∆t2/8)(I+A∆t+A2∆t2/2)(I+B∆t/2+B2∆t2/8)cn (2.17)

qui tout calcul fait donne le développement limité à l’ordre 2 de la solution exacte.
Notons que le prix à payer n’est pas un intervalle d’intégration plus long (chaque opérateur

est de toute manière intégré sur un intervalle de longueur ∆t) mais deux interruptions
d’intégration (et non plus une) 1.

2.2.3 Méthodes de type “Source Splitting”

Un inconvénient important des approches précédentes est le recours à une résolution
séquentielle des processus : en pratique, les conditions initiales pour chaque processus sont
modifiées à chaque sous-pas. Pour les processus présentant une grande disparité des échelles
de temps, ceci conduit à éloigner les solutions intermédiaires des variétés d’équilibre as-
sociées aux temps caractéristiques lents (voir chapitre 3) et à intégrer de nombreuses phases
transitoires générées de manière artificielle par l’approche séquentielle.

Une approche alternative est alors logiquement de ne pas modifier les conditions initiales
mais de tenir compte des contributions des processus par des termes sources supplémentaires
(on parle de source splitting) ou incréments (on parle aussi de formulation incrémentale)
dans l’équation du second processus (celui qui présente la disparité d’échelles de temps et
l’existence de phases transitoires potentielles).

L’algorithme devient alors le suivant :

1. Etape 1 de résolution du processus A (inchangée) :

dc∗

dt
= Ac∗ sur [0, ∆t] , c∗(0) = cn (2.18)

2. Etape 2 de résolution du processus B avec prise en compte d’un terme source (incrément)
lié à l’étape 1 :

dc∗∗

dt
= Bc∗∗ +

c∗(∆t)− cn

∆t
sur [0, ∆t] , c∗∗(0) = cn (2.19)

1A mettre en regard des remarques que l’on fera au chapitre 3 sur le coût des phases de redémarrage.
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La valeur de cn+1 est alors approchée par c∗∗(∆t).

Le point crucial est bien entendu que la condition initiale du second pas n’est pas modifiée.
Autrement dit, si cn avait atteint un état d’équilibre, on ne l’a pas perturbé (générant par
là même une couche transitoire de relaxation vers cet équilibre).

Un développement limité montre que cette méthode est d’ordre 2 localement (1 globale-
ment).

Pour être complet sur le plan de la terminologie, notamment pour les applications en
océanographie et météorologie, on parle aussi de méthode d’intégration “par tendances” (la
contribution du premier processus étant représentée par la “tendance” donnée par l’incrément).

2.2.4 Méthodes d’ordre supérieur

L’étude des erreurs d’ordre supérieur se fait à l’aide de la formule de Baker-Campbell-
Hausdorff (BCH : voir [18, 24, 36]) pour deux opérateurs linéaires X et Y :

eXeY = eZ , Z = X + Y +
1

2
[X, Y ] + h(X,Y, [X,Y ]) (2.20)

avec [X, Y ] = XY − Y X et h(X, Y, 0) = 0.

Des méthodes d’ordre plus élevé peuvent également être obtenues à l’aide d’une simple
extrapolation de Richardson ([55]). On rappelle que si l’on dispose d’un algorithme numérique
définissant une solution c∆t pour un pas ∆t, dont l’erreur locale est dominée par un terme
du type k∆t2, alors (4c∆t/2−c∆t)/3 définit une solution d’ordre local 3. Le résultat est direct
via :

c∆t/2 = cexact + k∆t2/4 , c∆t = cexact + k∆t (2.21)

avec cexact la solution exacte.

Un inconvénient important de cette méthode simple à mettre en oeuvre est, d’une part
son coût calcul, d’autre part la perte possible de positivité de la solution. En effet, même si
les algorithmes mis en oeuvre pour la résolution permettent de garantir la positivité de c∆t

pour tout pas de temps, ce n’est plus le cas pour la solution extrapolée.

2.2.5 Traitement des conditions aux limites

Dans les cas précédents, nous n’avons considéré que des opérateurs linéaires (ou ce qui
revient au même des discrétisations spatiales de termes de transport sans conditions aux
limites). La prise en compte de conditions aux limites induit le passage d’un cas linéaire à
un cas affine.

Pour illustrer ce point, considérons par exemple le terme d’advection avec un schéma
de type upwind (on se réfère au chapitre correspondant) : c(xi) est une approximation
par différences finies de la valeur au point de maillage xi (dans un cas 1D en espace) et
après discrétisation du terme d’advection, on obtient comme équation différentielle le terme
discrétisé générique :

dc(xi)

dt
=

V c(xi−1)− V c(xi)

∆x
(2.22)
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qui est bien sûr linéaire. Si l’on a une condition de bord de flux entrant, par exemple en
x = xi selon V c(xi) = L (avec L un terme de flux donné), alors le terme discrétisé devient
affine.

La donne est la même pour le terme de diffusion, la condition aux limites de dépôt/émission
générant un terme affine.

L’analyse précédente (limitée au cas linéaire) n’est alors plus valable et le traitement des
conditions aux limites reste un problème largement ouvert pour les méthodes de séparation
d’opérateurs (voir par exemple [42] ou [18] pour une quantification sur un exemple de
réaction-advection).

Il est aisé de l’illustrer sur le cas affine :

dc

dt
= Ac + Bc + L (2.23)

où A et B sont des opérateurs linéaires qui commutent et L est un vecteur représentant
les conditions aux limites. La question typique est de savoir comment “répartir” L entre les
deux opérateurs, sachant qu’il n’y a pas d’erreur de splitting associée à la seule séparation
des opérateurs. Pour le moment, on propose le schéma suivant :

dc∗

dt
= Ac∗ + αL sur [0, ∆t] , c∗(0) = cn (2.24)

suivi de
dc∗∗

dt
= Bc∗∗ + βL sur [0, ∆t] , c∗∗(0) = c∗(∆t) (2.25)

avec α et β deux coefficients à déterminer (plus exactement des matrices dans le cas vectoriel).
On suppose que A, B et A + B sont inversibles et on a directement pour la solution exacte :

cn+1 = e(A+B)∆t(cn + (A + B)−1L)− (A + B)−1L (2.26)

et pour les solutions issues des deux étapes de splitting :

c∗(∆t) = eA∆t(cn + αA−1L)− αA−1L (2.27)

et
c∗∗(∆t) = eB∆t(c∗(∆t) + βB−1L)− βB−1L (2.28)

soit encore :

c∗∗(∆t) = e(A+B)∆t(cn + αA−1L) + eB∆t(βB−1L− αA−1L)− βB−1L (2.29)

L’erreur de splitting est donc nulle si :

αA−1 = (A + B)−1 , βB−1 = (A + B)−1 , βB−1 − αA−1 = 0 (2.30)

ce qui conduit au choix des paramètres α et β selon :

α = (A + B)−1A , β = (A + B)−1B (2.31)
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Notons que la répartition optimale des conditions aux limites n’est donc pas, a priori, donnée
par l’origine physique des conditions.

Imaginons par exemple que L ne contienne que des conditions aux limites associées à
l’opérateur A : on peut être tenté de prendre α = 1 et β = 0. Néanmoins, un développement
limité de l’erreur de splitting pour ∆t petit permet de s’assurer que :

le = (1− (α + β))∆t + O(∆t2) (2.32)

et le schéma n’est donc que du second ordre dans ce cas-là.

Une telle approche se généralise aisément au cas non linéaire (voir par exemple [18]). Ce-
pendant, si de telles analyses permettent de trouver formellement un traitement des condi-
tions aux limites, l’application en pratique d’une telle approche reste difficile.

2.2.6 Splitting au niveau de l’algèbre linéaire

Afin de s’affranchir des problèmes liés au traitement des conditions aux limites, une
méthode alternative est d’effectuer le splitting “au niveau de l’algèbre linéaire” (certains
auteurs parlent d’ “internal splitting” : [54]). Dans le cadre d’une résolution couplée des
opérateurs pour l’équation

dc

dt
= Ac + Bc , c(0) = cn (2.33)

l’utilisation d’un schéma implicite en temps conduit à la résolution d’équations algébriques
(non linéaires dans le cas général). Par exemple avec une méthode d’Euler implicite :

cn+1 − cn

∆t
= Acn+1 + Bcn+1 (2.34)

soit (I − (A + B)∆t)cn+1 = cn. L’idée est alors de faire par exemple l’approximation :

I − (A + B)∆t ∼ (I − A∆t)(I −B∆t) + O(∆t2) (2.35)

ce qui conduit à la résolution successive de :

(I − A∆t)c∗ = cn (2.36)

puis de
(I −B∆t)c∗∗ = c∗ (2.37)

Le choix des notations n’est pas innocent et on reconnait la résolution par la méthode d’Euler
implicite du splitting d’opérateurs (A−B) :

dc∗

dt
= Ac∗ sur [0, ∆t] , c∗(0) = cn (2.38)

suivi de
dc∗∗

dt
= Bc∗∗ sur [0, ∆t] , c∗∗(0) = c∗(∆t) (2.39)

On peut se référer par exemple à [1, 54]. Notons qu’une méthode du même type est proposée
pour la résolution des équations de Navier Stokes dans [30] (où les méthodes de splitting
sont interprétées comme des choix de décomposition LU de matrices).

Notons pour conclure, que sur le plan de la terminologie, on parle aussi de méthode AMF
(pour Approximate Matrix Factorization).
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2.2.7 Extension au cas non linéaire

La généralisation au cas non linéaire de la notion de commutateur se fait avec l’utilisation
de la dérivée de Lie associée aux fonctions f et g (de la variable c) :

[f, g] =
∂g

∂c
f − ∂f

∂c
g (2.40)

Notons qu’à l’aide de la formule BCH, il suffit de montrer que deux opérateurs commutent
pour être assuré que l’erreur de splitting est nulle.

2.3 Application au cas de l’équation d’advection-diffusion-

réaction

2.3.1 Résultat

Les techniques précédentes ont été appliquées de manière systématique dans [24] aux
équations d’Advection-Diffusion-Réaction (sans conditions aux limites) :

∂ci

∂t
+ div(V (x, t)ci) = div(K(x, t)∇ci) + χi(c, T (x, t), t) (2.41)

L’ensemble des propriétés obtenues est résumé dans le théorème suivant.

Théorème 2.3.1
1. L’advection et la chimie commutent si la chimie ne dépend pas de la position spatiale

et si le champ de vitesse est à divergence nulle.

2. L’advection et la diffusion commutent si le champ de vitesse et la diffusion ne dépendent
pas de la position spatiale.

3. La diffusion et la chimie commutent si la chimie est linéaire et ne dépend pas de la
position spatiale.

Donnons d’abord quelques commentaires. Il est clair que l’hypothèse de non dépendance
en l’espace n’est pas en toute rigueur vérifiée pour la diffusion turbulente et le terme de
chimie (via la température), mais on peut estimer qu’elle est valide localement. A l’inverse,
une hypothèse “indéfendable” est celle relative à la linéarité de la chimie.

Ces résultats donnent donc une première indication : la principale erreur de splitting est
vraisemblablement celle liée au découplage entre diffusion (verticale) et chimie.

Pour le cadre de la pollution atmosphérique, ceci conforte les observations de [13] et
explique les efforts consacrés à une résolution couplée de la diffusion et de la chimie.

Une approche élégante de démonstration est fournie par le recours au formalisme de Lie
mais la plupart des résultats peuvent être obtenus de manière certes un peu calculatoire
mais peut-être plus parlante pour le lecteur non averti. C’est le choix qui a été retenu dans
la suite pour la démonstration ([45]).
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2.3.2 Advection-réaction

Il suffit d’écrire de manière classique la méthode des caractéristiques pour la commutation
entre chimie et advection (comme noté dans [26] puis [19, 43]).

On suppose le champ de vitesse constant V (x, t) = u et soit X(x, t) la caractéristique
associée à x : X(x, t) = x + ut. Soit la fonction de t à x fixé :

gx(t) = c(X(x, t), t) (2.42)

On a aisément :
dgx

dt
=

∂c

∂t
+

∂c

∂x

∂X

∂t
= χ(gx, t) , gx(0) = c(x, 0) (2.43)

On notera désormais G(g0, t) la solution de l’EDO :

dG

dt
= χ(G) , G(0) = g0 (2.44)

La solution du problème d’advection-réaction est donc donnée par :

c(x, t) = gx−ut(t) = G(c(x− ut, 0), t) (2.45)

Montrons que cette solution est obtenue par splitting. Le splitting advection puis réaction
revient à intégrer pour la seconde étape :

dcx

dt
= χ(cx, t) , (2.46)

avec pour condition initiale cx(0) = c(x− u∆t, 0) la sortie en t = ∆t de l’étape d’advection.
On a donc par définition, avec des notations évidentes :

cA−χ(x, t) = G(c(x− u∆t, 0), t) (2.47)

et on retrouve la solution exacte au temps t = ∆t 2.
Le splitting associé réaction-advection est donné directement par :

cχ−A(x, t) = G(c(x− ut, 0), ∆t) (2.48)

où G(c(x, 0), ∆t) est la condition initiale pour l’étape de convection. On retrouve bien en-
tendu en t = ∆t la solution exacte.

2.3.3 Diffusion-Réaction

L’étude de la commutation des opérateurs de diffusion et de chimie linéaire peut être
effectuée de la même manière à l’aide de la solution de l’équation de la chaleur.

On étudie le cas d’une diffusion indépendante de l’espace et scalaire. Pour simplifier, on
prend la diffusion et la dimension de l’espace égales à 1. On rappelle enfin que la solution de

2... ce qui montre l’importance des temps de sortie des algorithmes de splitting : on ne retrouve la solution
exacte qu’au temps t = ∆t, les solutions intermédiaires n’ayant pas de “sens physique”.
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l’équation de la chaleur dans tout l’espace peut être calculée à l’aide du noyau G(z, t) selon
([25]) :

c(x, t) =

∫
G(x− y, t) c(y, 0) dy , G(z, t) =

1√
2πt

exp(−z2

4t
) (2.49)

On note χ(c, t) = Mc, où M est une matrice, le terme de chimie étant supposé linéaire.
Notons enfin :

c̄(x, t) = e−Mtc(x, t) (2.50)

où c est la solution de l’équation de Réaction-Diffusion initiale.
On a aisément :

∂c̄

∂t
= e−Mt ∂c

∂t
−Me−Mtc(x, t) (2.51)

soit :
∂c̄

∂t
= e−Mt ∂

2c

∂x2
=

∂2c̄

∂x2
(2.52)

dont la solution est directement donnée par :

c̄(x, t) =

∫
G(x− y, t) c(y, 0) dy (2.53)

Finalement la solution exacte est :

c(x, t) = eMt

∫
G(x− y, t) c(y, 0) dy (2.54)

dont l’évaluation en t = ∆t donne :

c(x, ∆t) = eM∆t

∫
G(x− y, ∆t) c(y, 0) dy (2.55)

Cette solution s’interprète directement comme la solution issue du splitting Diffusion puis
Réaction. Il reste à étudier le splitting Réaction puis Diffusion. La solution de la seconde
étape est :

c∗∗(x, t) =

∫
G(x− y, t) c∗∗(y, 0) dy (2.56)

avec pour condition initiale c∗∗(y, 0) = eM∆tc(y, 0), et on conclut aisément.

2.3.4 Advection-Diffusion

Etudions à présent la commutation entre advection et diffusion. On se place dans le même
cadre d’hypothèses simplificatrices pour la diffusion que précédemment. En définissant la
solution le long des caractéristiques selon :

g(x, t) = c(x + ut, t) (2.57)

on vérifie aisément que g vérifie l’équation de la chaleur, soit :

c(x, t) =

∫
G(x− ut− y, ∆t) c(y, 0) dy (2.58)
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dont l’évaluation en t = ∆t donne :

c(x, ∆t) =

∫
G(x− u∆t− y, ∆t) c(y, 0) dy (2.59)

Ceci s’interprète directement comme la solution issue du splitting diffusion puis advection.
Si on effectue le changement de variables Y = y + u∆t, on obtient :

c(x, ∆t) =

∫
G(x− Y, ∆t) c(Y − u∆t, 0) dY (2.60)

et on retrouve la solution issue du splitting advection puis diffusion.

2.4 Exercices

2.4.1 Traitement des conditions aux limites

On considère le problème d’advection-réaction
∂c

∂t
+

∂c

∂x
= c2, x variant dans ]0, 1[, avec

la condition de Dirichlet en x = 0 :

c(0, t) =
sin2(πt)

1− t sin2(πt)

et avec la condition initiale :
c(x, 0) = sin2(πx)

La solution exacte est :

c(x, t) =
sin2(π(x− t))

1− t sin2(π(x− t))

On s’intéresse à l’intégration du premier pas de temps, i.e. sur [0, ∆t]. Intégrer la chimie
puis l’advection. Comparer à la solution exacte.

Calculer la solution issue de la séparation chimie puis advection. Comparer à la solution
exacte.

2.4.2 “Source splitting”

Montrer que l’erreur locale de la méthode “source splitting” est d’ordre 2.



Chapitre 3

Simulation numérique des Equations
Différentielles Ordinaires pour le
traitement des termes réactifs

L’objet de ce chapitre est de présenter les bases de la simulation numérique des systèmes
d’Equations Différentielles Ordinaires (EDO) qui sont associées aux termes réactifs dans le
modèle de dispersion réactive.

Les méthodes de splitting d’opérateurs sont classiquement utilisées pour découpler la
résolution des différents processus. Dans ce cadre, la résolution en temps, maille par maille,
des termes réactifs est souvent extrêmement délicate et de loin la partie limitante dans les
algorithmes numériques du fait de la grande disparité des échelles de temps.

Une première section est consacrée aux notions numériques classiques de ce domaine. En
pratique, les problèmes rencontrés se caractérisent par la grande dispersion des échelles de
temps : on parle classiquement de problèmes “raides” (stiff), qu’aborde la deuxième section.
Dans la troisième partie, on présente quelques algorithmes classiques. Enfin, on termine par
une section dédiée aux méthodes de réduction, qui consistent à modifier le système physique
en “filtrant” les composantes rapides (c’est à dire celles qui génèrent la raideur numérique).

3.1 Quelques notions classiques

3.1.1 Système considéré

Dans toute la suite, on cherche à résoudre un système d’EDOs sous la forme :

dc

dt
= f(c, t) , c(0) = c0 , c ∈ Rp (3.1)

qui peut éventuellement provenir d’une discrétisation spatiale.
Pour des analyses de stabilité, on étudiera le système :

dδc

dt
= λδc , c ∈ R (3.2)

35
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avec δc une perturbation dans une direction (que l’on notera par abus c) et λ une valeur
propre de la matrice jacobienne J = ∂f/∂c.

Enfin, on suppose donnée une discrétisation du temps (tn), avec un pas de temps constant
pour simplifier ∆t : cn ' c(tn) est alors l’approximation numérique que l’on cherche à calculer
de manière itérative. Les algorithmes vont donc consister à estimer cn+1 en fonction des
estimations aux temps précédents.

3.1.2 Erreur locale, erreur globale et stabilité

Afin d’illustrer les notions d’erreurs et de stabilité, on va considérer l’exemple de la θ-
méthode donnée par l’algorithme suivant :

cn+1 − cn

∆t
= (1− θ)f(cn, tn) + θf(cn+1, tn+1) (3.3)

où θ est un indicateur du degré d’implicitation : si θ = 0 (resp. 1), on retrouve la méthode
d’Euler explicite (resp. implicite).

Ecrivons à présent l’algorithme sous la forme :

cn+1 = cn + ∆t(1− θ)f(cn, tn) + ∆tθf(cn+1, tn+1) (3.4)

Si on “insère” dans cette formule la solution exacte, on obtient :

c(tn+1) = c(tn) + ∆t(1− θ)f(c(tn), tn) + ∆tθf(c(tn+1), tn+1) + ρn (3.5)

avec un résidu ρn, la solution exacte n’ayant aucune raison de vérifier l’algorithme discret.
Après développement de Taylor, on obtient :

ρn =
1

2
(1− 2θ)∆t2

d2c

dt2
+ O(∆t3) (3.6)

avec
d2c

dt2
=

∂f

∂c
f +

∂f

∂t
. ρn définit ce que l’on appelle classiquement l’erreur de troncature.

Un point clé est bien entendu la propagation de cette erreur lors des pas de temps
ultérieurs. Si on note εn = c(tn)−cn l’erreur globale (résultant des erreurs locales antérieures
et de leur propagation), on a pour le cas linéaire (linéarisé) :

εn+1 = εn + (1− θ)λ∆tεn + θλ∆tεn+1 + ρn (3.7)

En notant :

R(z) =
1 + (1− θ)z

1− θz
(3.8)

l’étude de l’erreur devient :
εn+1 = R(λ∆t)εn + δn (3.9)

avec δn = (1 − θλ∆t)−1ρn l’erreur locale qui correspond à l’erreur effectuée sur un pas de
temps, en supposant la solution bonne à tn. Il y a donc de manière logique deux contributions
à l’erreur :
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1. une erreur purement locale ;

2. une erreur correspondant à la propagation des erreurs précédentes.

Avec une terminologie évidente, on appelle classiquement fonction de stabilité la fonction
R(z) de la variable complexe z ∈ C (les valeurs propres de J étant en toute généralité
complexes) définie pour le problème linéarisé f(c, t) = λc par :

cn+1 = R(λ∆t)cn (3.10)

On a alors directement :

εn = (R(λ∆t))nε0 +
i=n−1∑

i=0

(R(λ∆t))iδn−1−i (3.11)

Si ||R(λ∆t)|| ≤ K (fonction de stabilité bornée), alors on a :

|εn| ≤ K|ε0|+ K

i=n−1∑
i=0

|δi| (3.12)

Pour une erreur locale δi = O(∆tp+1) (p = 1 ou p = 2 ici), on a donc avec T = n∆t, une
erreur contrôlée, hors la partie relative aux conditions initiales, en O(∆tp), ce qui illustre la
perte d’ordre lors du passage de l’erreur locale à l’erreur globale.

3.1.3 Domaines de stabilité

Pour le problème linéarisé, lorsque λ ≤ 0, la perturbation décrôıt en valeur absolue.
On peut attendre la même propriété (ce qui va au delà d’attendre que la perturbation soit
bornée) pour le cas discrétisé. On définit donc assez logiquement les méthodes A − stables
pour lesquelles C− est contenue dans le domaine de stabilité :

S = {z ∈ C : |R(z)| ≤ 1} (3.13)

On peut montrer que la θ-méthode est A-stable pour θ ≥ 1/2. Sinon, il est suffisant de
vérifier que λ∆t ∈ S pour garantir la stabilité de l’algorithme, ce qui donne une contrainte
sur le pas de temps, en pratique pour le cas de la méthode d’Euler explicite :

∆t ≤ 1

2|λ| (3.14)

Comme le concept de A-stabilité peut s’avérer trop restrictif, un concept moins fort et
habituellement demandé aux schémas numériques est la A(α)-stabilité, définie par {z :
|arg(−z)| ≤ α} ⊂ S.

Enfin, pour terminer avec ces concepts, il est fréquemment demandé (notamment pour
les systèmes raides, voir ci-après) la L-stabilité qui est associée à R(∞) = 0. En pratique,
ceci correspond au cas asymptotique λ∆t À 1, dans lequel on souhaite travailler avec nos
schémas numériques (pas de temps non contraints par les échelles physiques les plus petites).
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valeur propre espèce τ−1

-80019.18 O3P -80019.17
-78.34 RXPAR -78.34
-54.68 OH -51.41
-19.74 PHO -19.74
-18.95 C2O3 -18.08
-17.98 NO3 -17.98
-6.69 HO2 -6.69
-5.44 XO2 -9.18
-0.56 XO2N -0.56
-0.47 HNO4 -0.85

-4.74E-2 N2O5 -5.25E-2
-3.10E-2 NO -1.04E-2 (-3.16E-2)

NO2 -5.90E-3 (-3.14E-2)
O3 -1.51E-2 (-1.9E-2)

Tab. 3.1 – Raideur du schéma CBMIV.

Il est enfin à noter que hors “cas pathologique” (comme les systèmes autocatalytiques),
la cinétique chimique est stable et les valeurs propres de la matrice jacobienne sont de partie
réelle négative.

Un point clé est bien entendu le respect de la positivité des concentrations. En effet, pour
le cas linéaire :

dc

dt
= λc , λ ≤ 0 (3.15)

une concentration négative peut conduire à une “explosion” non contrôlée de la simulation
numérique. Le critère de positivité va donc être un élément essentiel des schémas numériques.

3.2 Systèmes raides

3.2.1 Quelques caractérisations de la raideur

3.2.1.1 Distribution des valeurs propres et des temps caractéristiques

Une caractéristique essentielle des systèmes réactifs à traiter en pratique est la grande
disparité des échelles de temps. Par exemple, pour le cas de l’atmosphère, les échelles varient
de quelques millisecondes pour des radicaux comme OH ou O à des années pour le méthane.

Le tableau 3.1 montre, pour un schéma cinétique couramment utilisé en pollution at-
mosphérique (CBMIV [11]), la distribution des 12 plus grandes valeurs propres (en valeur
absolue) du Jacobien associé à la production chimique (en un point donné de l’espace des
phases). Toutes les autres valeurs propres, au nombre de 16, sont supérieures ou égales
à −8.4.10−4, et se distribuent de manière continue jusqu’à la plus grande valeur propre
(−5.9.10−7).
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La colonne en regard indique les temps caractéristiques (remarque 1.4.3) de certaines
espèces. Les espèces NO2 et O3 ont été rajoutées. Pour ces deux dernières espèces et NO,
un temps caractéristique a été également calculé dans la base de variables lumpées Ox =
O3 + NO2 et NOx = NO + NO2 (qui remplacent respectivement O3 et NO2).

Au sens généralement admis du terme, les équations de la cinétique chimique sont donc
raides puisque :

– les valeurs propres du jacobien sont de partie réelle strictement négative ;
– si λmin et λmax sont les valeurs propres respectivement de plus petite et de plus grande

valeurs absolues 1, alors :

|λmax

λmin

| À 1 (3.16)

La notion de raideur est en réalité particulièrement difficile à définir 2, et on va d’abord revenir
sur quelques caractéristiques des problèmes raides à l’aide de trois éclairages sensiblement
différents :

– la perte de stabilité des schémas explicites,
– la comparaison des contraintes de précision et de stabilité,
– et enfin la résolution des systèmes algébriques induits par l’utilisation de schémas

implicites.
On reviendra sur les différences entre schémas explicites et implicites en adoptant le point
de vue des systèmes dynamiques dans la section consacrée à la réduction.

3.2.1.2 Stabilité versus précision

Une manière pragmatique de distinguer un problème raide d’un problème non raide se
fonde sur la comparaison des performances d’un schéma explicite et d’un schéma implicite de
même ordre ([4, 14, 39]). Ceci revient à dire qu’un problème est raide lorsque le pas de temps
d’un schéma explicite est donné par la contrainte de stabilité plutôt que par la contrainte
de précision. Avec une telle définition, la position dans l’intervalle de calcul joue un rôle
prépondérant, comme l’exemple suivant va l’illustrer.

Examinons l’EDO (scalaire) 3 :

dc

dt
= −λ(c− ceq(t)) +

dceq

dt
(3.17)

où ceq(t) est une fonction régulière connue (décrivant en réalité les modes “lents” du système)
et λ > 0 un paramètre donné (essentiellement grand). La solution est bien entendu

c(t) = ceq(t) + (c(0)− ceq(0))e−λt (3.18)

Il n’y a qu’une valeur propre et la notion de raideur doit être précisée.

1Ceci correspond en réalité au cas bien partitionné (“stiffly separable” dans [61]), que l’on étudiera en
pratique.

2Voir la préface de [14] ou la discussion pages 360-363 dans [2].
3C’est une légère modification de l’exemple historique de Curtis et Hirschfelder ([8]) et bien entendu une

variation sur l’exemple précédent (mais le point de vue est différent car ceq(t) est à voir comme un équivalent
de solution “réduite” - voir plus loin).
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Pour un schéma du premier ordre (comme les schémas d’Euler, implicite ou explicite),
l’erreur de précision est classiquement contrôlée par un estimateur de la dérivée seconde de
la solution :

|ρn| ' 1

2
|(1− 2θ)∆t2

d2c

dt2
| ≤ εtol (3.19)

avec εtol une tolérance d’erreur à spécifier par le modélisateur. Le point clé est que cette
contraine est la même pour les deux schémas.

Montrons à présent que la contrainte de précision associée à cette erreur locale varie
fortement en temps pour (3.17).

On a évidemment pour t = O(
1

λ
) (en temps court) :

c(t) ' ceq(0) + (c(0)− ceq(0))e−λt (3.20)

La dérivée seconde de c est alors de l’ordre de :

λ2(c(0)− ceq(0))e−λt (3.21)

et pour λ À 1, on obtient une contrainte de précision (λ∆t)2 ≤ εtol beaucoup plus stricte
que la contrainte de stabilité déjà calculée (|λ∆t| ≤ 1).

A l’inverse, pour des temps assez grands, on a c(t) ' ceq(t), et la contrainte de précision
est relâchée. Autrement dit, c’est la contrainte de stabilité qui va primer pour le schéma
explicite.

On voit donc que l’on a deux intervalles en temps bien distincts :
– une phase transitoire (d’une durée de l’ordre de λ−1), pour laquelle la contrainte de

précision est du même ordre que la contrainte de stabilité du fait des gradients très
prononcés. Un schéma explicite et un schéma implicite utilisent donc dans cette zone
des pas de temps du même ordre.

– puis une phase dans laquelle la contrainte de précision devient non dimensionnante
par rapport à la contrainte de stabilité d’un schéma explicite. C’est là qu’un schéma
explicite a des performances dégradées. Ceci correspond donc à la partie raide de
l’évolution 4.

Un corollaire pratique de cette remarque est que les couches transitoires sont “chères” à
intégrer puisque la contrainte de précision y est stricte. Ceci permet de comprendre le coût
des redémarrages et de l’intégration des phases transitoires pour les systèmes raides. Ceci
est un point essentiel pour les méthodes de séparation d’opérateurs qui contribuent à créer
des phases transitoires artificielles alors même que les phases transitoires physiques ont déjà
été intégrées. C’est ce qui sous-tend le choix des méthodes de type “Source-Splitting” déjà
présentées.

3.2.1.3 Dépendance aux conditions initiales

Pour l’exemple (3.17), afin d’étudier la dépendance en la condition initiale de c(t), on
note C(t, c0) la valeur, à l’instant t, de la solution issue de la condition initiale c(0) = c0. On

4Le terme “raide” n’est donc pas à prendre au sens “alpin” (ou pyrénéen selon les affinités) du terme,
puisqu’il suffit d’ajuster les conditions initiales avec c(0) = ceq(0) pour supprimer la phase transitoire (donc
les gradients prononcés) et se placer directement dans la partie raide.
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a alors directement :
∂C(t, c0)

∂c0

= e−λt (3.22)

et dès que la phase transitoire est passée (t >
1

λ
), on peut négliger la dépendance en fonction

des conditions initiales :
∂C(t, c0)

∂c0

' 0 (3.23)

Ceci se généralise pour un système avec plusieurs variables : les espèces rapides (celles
concernées par les valeurs propres les plus négatives) ne dépendent pas des conditions ini-
tiales ! Les systèmes raides sont donc particulièrement stables.

De manière générale, pour sa composante rapide, le système “oublie” les conditions ini-
tiales et les erreurs accumulées (ce qui signifie en terme de données d’entrée des modèles par
exemple, qu’il ne sert à rien d’estimer finement les espèces rapides !). On reviendra sur ce
point lors de l’approche par réduction.

3.2.2 Mise en oeuvre pratique des algorithmes implicites

Pour les systèmes raides, hors phases transitoires initiales, il faut donc utiliser des méthodes
implicites afin de ne pas être contraint par la stabilité.

L’utilisation de schémas implicites conduit néanmoins à des temps de calcul qui restent
prohibitifs : en effet, même si les pas de temps sont plus grands que pour un schéma explicite,
la résolution des systèmes algébriques associés aux schémas implicites reste coûteuse.

Pour illustrer ce point, prenons l’exemple (largement générique) de la méthode d’Euler
implicite. Pour le système général initial, l’algorithme implicite s’écrit :

cn+1 = cn + ∆tf(cn+1, tn+1) (3.24)

qui définit un système d’équations algébriques a priori non linéaires, qu’il s’agit de résoudre
numériquement en l’inconnue cn+1.

Une première approche simple est d’utiliser un algorithme de point fixe selon :

c
(k+1)
n+1 = cn + ∆tf(c

(k)
n+1, tn+1) (3.25)

Ceci est simple à mettre en oeuvre puisque le calcul est ... explicite.
La convergence de la suite d’itérées c

(k)
n+1 doit donner cn+1 ... si la fonction f(., tn+1) est

contractante, c’est à dire que :
|λ|∆t ≤ 1 (3.26)

pour les λ valeurs propres de la matrice jacobienne de f . Autrement dit, on retrouve assez
moralement la contrainte de stabilité des schémas explicites !

En pratique, on préfère chercher le zéro d’une fonction par une méthode itérative de type
Newton (beaucoup moins restrictive pour la convergence : tout va dépendre de l’initialisation
de la séquence, sur laquelle on ne s’étendra pas ici, même si c’est un enjeu numérique majeur).
cn+1 est le zéro de la fonction :

g(c) = c− cn −∆tf(c, tn+1) (3.27)
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La méthode de Newton s’écrit alors :

(
∂g

∂c
)
c
(k)
n+1

(c
(k+1)
n+1 − c

(k)
n+1) = −g(c

(k)
n+1) (3.28)

Il s’agit donc d’inverser à chaque itération (et à chaque pas de temps ...) une matrice de
dimension le nombre de traceurs (et ce en chaque maille). Heureusement, le fait de prendre
une matrice approchée (en pratique fixée sur plusieurs itérations et sur plusieurs pas de
temps) ne dégrade pas la solution (éventuellement la vitesse de convergence).

In fine, tout se ramène donc à une inversion de matrice, faite classiquement par une
méthode de type décomposition LU.

3.3 Quelques algorithmes de résolution

On va à présent présenter plus spécifiquement quelques algorithmes de résolution de la
cinétique chimique :

– les adaptations des méthodes multi-pas classiques, pour lesquelles se pose, comme on
vient de le voir, la question de la résolution des systèmes algébriques induits,

– les méthodes hybrides de type “implicite-explicite”,
– les méthodes asymptotiques qui se fondent sur la forme “production-consommation”

(1.23) des équations de la cinétique chimique,
– et enfin les méthodes de Rosenbrock qui sont des méthodes particulièrement perfor-

mantes (notamment pour la simulation de la pollution atmosphérique).

3.3.1 Méthodes multi-pas

L’algorithme de référence est la méthode de Gear (package LSODE [17]), qui est basée
sur un schéma de type BDF (Backward Differentiation Formula). En dehors de l’avantage
de pouvoir utiliser en “bôıte noire” un tel logiciel, une méthode BDF permet en particulier
de conserver les invariants linéaires ([31]). Un des désavantages majeurs est la non-positivité
éventuelle des solutions et le recours, habituellement prôné, au clipping (la mise à zéro des
concentrations négatives en cours de calcul).

La formule générale s’écrit sous la forme :

cn+1 = Cn + β∆tf(tn+1, cn+1) (3.29)

où β est un coefficient et Cn est une combinaison linéaire des valeurs précédentes et des
dérivées en ces points (tous les deux sont donc connus), qui dépendent de la méthode choisie.

Le potentiel de réduction du temps calcul d’une méthode BDF réside essentiellement
dans l’accélération de la résolution de la contrainte algébrique :

1. soit par l’utilisation d’algorithmes d’algèbre linéaire dédiés, prenant en compte la faible
densité des matrices traitées.

Dans [20] la structure creuse des systèmes linéaires à résoudre permet l’utilisation
conjointe d’algorithmes d’algèbre linéaire spécifiques et de techniques de vectorisation
(sur l’ensemble des mailles), ce qui améliore considérablement les performances des
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schémas BDF. Dans [33], on pourra trouver de même une analyse exhaustive des tech-
niques de pivot (critère de Markowitz) pour minimiser la densité des systèmes linéaires
à résoudre. Les résultats obtenus dans [53] (avec l’utilisation du logiciel VODE, dérivé
de LSODE) vont dans la même direction.

2. soit par une résolution dégradée, alternative à l’algorithme de Newton.

Une première approche se fonde sur la forme particulière des équations de la cinétique
chimique, du moins en l’absence d’autocatalyse. Sous forme vectorielle, on a déjà vu
qu’on avait une équation d’évolution de la forme (remarque 1.4.2) :

dc

dt
= P (c)− L(c)c (3.30)

où c est le vecteur des concentrations, P est le vecteur (positif) de production et L
est la matrice diagonale positive de consommation. Un schéma de type BDF appliqué
à une telle équation différentielle conduit alors à la résolution du système algébrique
réécrit sous la forme :

cn+1 = (I + β∆tL(cn+1))
−1(Cn + β∆tP (cn+1)) (3.31)

où la matrice I + β∆tL(cn+1) est diagonale et en conséquence inversible de manière
directe.

La méthode TWOSTEP, proposée dans [50, 51, 57], est fondée sur la méthode BDF
d’ordre 2, avec une résolution par un algorithme de type Gauss-Seidel de l’équation
algébrique :

c = (I + β∆tL(c))−1(Cn + β∆tP (c)) (3.32)

En pratique, deux itérations suffisent pour résoudre cette équation. Une telle résolution,
de type explicite (sans inversion de matrices), améliore considérablement les perfor-
mances en terme de temps calcul (voir [57] et les benchmarks [35, 53]).

Une seconde approche revient à approcher le Jacobien par une matrice triangulaire,
ce qui évite là encore d’avoir à utiliser des méthodes itératives ou directes pour les
inversions numériques ; elle est par exemple préconisée dans [23]. On rappelle qu’une
approximation du Jacobien n’induit qu’une modification de la vitesse de convergence
de l’algorithme de Newton ([7, 21]).

Remarque 3.3.1 (Un autre point de vue pour Twostep)
On peut voir Twostep selon un point de vue différent de celui de l’article initial ([51]) : pour
schématiser, la méthode revient à préconditionner pour pouvoir utiliser un algorithme de
point fixe.

L’algorithme de Newton appliqué à l’équation

g(c)
def
= c− Cn − β∆t(P (c)− L(c)c) = 0 (3.33)

s’écrit sous la forme :
∂g

∂c
(ck)(ck+1 − ck) = −g(ck) (3.34)
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avec
∂g

∂c
(ck) = I − β∆t

∂f

∂c
(ck) , f(c) = P (c)− L(c)c (3.35)

Si on approche la matrice jacobienne par la matrice diagonale des termes de consommation
selon :

∂f

∂c
(ck) ' −L(ck) (3.36)

on a aisément :
ck+1 = (I + β∆tL(ck))−1(Cn + β∆tP (ck)) (3.37)

et on retrouve exactement la formulation de Twostep.
On peut donc interpréter Twostep comme un choix d’approximation diagonale du Jaco-

bien, lors de l’algorithme de Newton. Une telle approche a déjà été proposée par Shampine
dans [38], avec notamment des conditions de convergence.

Ce point de vue permet de comprendre la nécessité d’utiliser des lumpings pour Twostep.
Par exemple, pour le système (que l’on aura fréquemment l’occasion de rencontrer) :

ε
dx

dt
= −x + y , ε

dy

dt
= x− y (3.38)

le Jacobien est constant et bien entendu très mal approché par sa diagonale puisqu’en parti-
culier on ne “voit” pas la valeur propre 0. Si on se place dans le système lumpé (u = x+y, y),
on a par contre :

du

dt
= 0 , ε

dy

dt
= u− 2y (3.39)

et le Jacobien est bien approché par sa diagonale (au sens où les valeurs propres sont cor-
rectement restituées) 5.

Remarque 3.3.2 (Résolution couplée de la diffusion et de la chimie)
Les techniques utilisant le caractère creux des systèmes linéaires à résoudre ne sont pas
généralisables aux cas 3D lorsque diffusion et chimie sont résolues de manière couplée (de
préférence à une méthode de séparation d’opérateurs). L’algorithme Twostep présente par
contre l’avantage de pouvoir être étendu au cas du couplage avec la diffusion ([52])

Remarque 3.3.3 (Méthode EBI)
La méthode EBI (Euler Backward Iterative) est fondée sur le schéma d’Euler implicite ap-
pliqué à l’équation :

dc

dt
= P (c)− L(c)c (3.40)

sous la forme :

cn+1
i = fi(c

n+1) =
cn
i + Pi(c

n+1)∆t

1 + Li(cn+1)∆t
(3.41)

qui est le pendant direct de Twostep (pour l’ordre 1). Une méthode de type point fixe

cn+1,k+1
i = fi(c

n+1,k) (3.42)

5Ce qui est à mettre en regard du tableau 3.1.
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ne converge pas, avec des pas de temps acceptables, pour des raisons qui ont déjà été
évoquées.

La méthode EBI consiste alors à partitionner les espèces en plusieurs groupes G1, G2,
...Gm−1 et Gm (selon la réactivité des espèces avec le radical OH et les termes de couplage
existant entre espèces ) et à résoudre par blocs de manière exacte le système algébrique,
successivement pour chaque bloc Gi (avec i < m), et par point fixe pour le bloc restant Gm.

Des méthodes du même type sont proposées dans [10, 41]. On pourra également se référer
à toute la littérature sur la “méthode des familles” ([5, 28]).

3.3.2 Méthodes hybrides

A la suite des travaux de [3], des méthodes hybrides ont été proposées pour la résolution
des équations de la cinétique chimique. L’idée directrice est de partitionner 6 les espèces en
deux groupes, les espèces lentes x et les espèces rapides y, qui correspondent à une partition
de la dynamique en une partie lente (fL) et une partie rapide (fR) selon :

dx

dt
= fL(x, y) ,

dy

dt
= fR(x, y) (3.43)

Un schéma explicite peut alors être appliqué pour la résolution de la partie non raide (pour
l’intégration des espèces lentes) alors qu’un schéma implicite est utilisé pour la partie raide
(correspondant aux espèces rapides).

L’avantage principal réside dans la diminution de la taille des systèmes à inverser, donnée
à présent par le nombre de variables rapides. Les modes opératoires se distinguent pour les
méthodes de ce type par le critère de partition, les schémas utilisés et l’ordre de succession
des intégrations des sous-systèmes.

On peut par exemple se référer à [12] pour un algorithme fondé sur les schémas d’Euler
implicite et explicite. La partition des variables se fait classiquement par comparaison des
temps de vie des espèces et du pas de temps ∆t. La séquence d’intégration des sous-systèmes
proposée est la suivante :

– intégration du système non raide (à l’aide du schéma explicite) pour les espèces lentes,

x∗n+1 − xn

∆t
= fL(xn, yn) (3.44)

– intégration du système raide (à l’aide du schéma implicite) pour les espèces rapides,
en utilisant les valeurs modifiées des espèces lentes,

yn+1 − yn

∆t
= fR(x∗n+1, yn+1) (3.45)

– réactualisation des espèces lentes (par intégration du système non raide tenant compte
des espèces rapides modifiées) :

xn+1 − xn

∆t
= fL(xn, yn+1) (3.46)

6On ne précise pas plus ici.
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Dans la même veine, la méthode IEH (Implicit Explicit Hybrid) utilise la méthode de Gear
pour la partie raide (via le solveur LSODE) et une méthode de second ordre (Adams-
Bashforth) pour la partie non raide ([6, 49]). La partition des variables n’est pas détaillée et
au contraire de la méthode précédente la réactualisation des espèces lentes n’est pas effectuée.

On reviendra sur de telles approches dans la partie consacrée à la réduction .

3.3.3 Schémas asymptotiques

A la suite des travaux de Young et Boris (l’algorithme hybride CHEMEQ dans [63]),
de nombreux schémas numériques à précision dégradée mais plus rapides 7 ont été proposés
pour la simulation de la cinétique chimique.

Soit une espèce chimique i dont la concentration évolue selon :

dci

dt
= fi(c) = Pi(c)− Li(c)ci (3.47)

avec Pi et Li les termes (positifs ou nuls) de production et de consommation. Ces termes
dépendent, en toute généralité, de l’ensemble des concentrations.

Les schémas asymptotiques sont fondés sur une hypothèse de linéarisation du terme
source. En considérant en première approximation que Pi et Li sont constants sur un inter-
valle de temps de longueur ∆t, on a aisément :

cn+1
i = exp(−Ln

i ∆t)cn
i + (1− exp(−Ln

i ∆t))
P n

i

Ln
i

(3.48)

en notant cn
i = ci(tn), cn = c(tn), Ln

i = Li(c
n) et P n

i = Pi(c
n).

Le schéma QSSA (pour Quasi-Steady-State Approximation : [16]) revient à partitionner
les espèces selon leur temps de vie τn

i = (Ln
i )−1 en un jeu d’espèces lentes et un jeu d’espèces

rapides pour lesquels une intégration différente est réalisée. Notons que le nom est trompeur,
car l’hypothèse essentielle est une hypothèse de linéarisation, sans lien avec une hypothèse
de quasi-stationnarité (au sens de la section consacrée à la réduction).

La partition des espèces et la résolution de (3.48) sont faites par exemple de la manière
suivante :

– pour les espèces lentes ∆t ≤ τn
i

100
, le schéma d’Euler explicite est utilisé :

cn+1
i = cn

i + (P n
i − Ln

i c
n
i )∆t (3.49)

– pour les espèces rapides ∆t ≥ 10τn
i , (3.48) est approchée par :

cn+1
i =

P n
i

Ln
i

(3.50)

7... ou présumés comme tels, une analyse comparative du temps calcul à précision fixée se révèlant être
particulièrement défavorable pour de tels schémas ([35, 37] par exemple).
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– pour les espèces intermédiaires
τn
i

100
≤ ∆t ≤ 10τn

i , (3.48) est utilisée telle quelle.

Un tel algorithme est une version modifiée de l’algorithme de type prédicteur-correcteur
initialement proposé par Young et Boris ([63]). Cette dernière méthode s’avère être moins ra-
pide ([29]) mais plus précise ([37]). Notons que les implémentations varient considérablement
d’un auteur à l’autre, ce qui rend particulièrement difficile toute tentative de comparaison
([37]).

Remarque 3.3.4 (QSSA d’ordre supérieur)
Plusieurs tentatives ont été faites pour améliorer la précision des méthodes de type QSSA.
Une première approche, non spécifique aux méthodes QSSA, est fondée sur des extrapolations
de Richardson ([9]) et permet d’améliorer considérablement la précision.

Une technique plus spécifique aux algorithmes de type QSSA est basée sur des développements
d’ordre élevé de l’exponentielle ([57, 58]). Notons d’abord que la formule asymptotique (3.48)
peut aussi s’écrire :

cn+1
i = G(−Ln

i ∆t)cn
i + ∆t

G(−Ln
i ∆t)− 1

−Ln
i ∆t

P n
i (3.51)

avec G(z) = ez ou bien une approximation consistante de l’exponentielle (par exemple un
développement de Padé). La positivité des solutions est alors garantie pour

G(z) ≥ 0 ,
G(z)− 1

z
≥ 0 pour z ≤ 0 (3.52)

On pourra par exemple se référer à [58] pour la définition d’algorithmes QSSA d’ordre 2,
fondés sur le développement de Padé :

G(z) =
1

1− z +
z2

2

(3.53)

Remarque 3.3.5 (A propos des règles “ad hoc”)
Un inconvénient des schémas QSSA est la nécessité d’avoir recours à des règles ad hoc (“ad
hoc rules” 8 dans [53]), souvent obscures.

On en relèvera notamment quatre :
– la résolution (simplifiée) pour les espèces rapides est faite chez certains auteurs par :

cn+1
i =

P n
i

Ln
i

(3.54)

que l’on retrouve bien entendu si lim
z→−∞

G(z) = 0. Il est parfois préconisé ([15]) d’itérer

un certain nombre de fois selon :

cn+1,k+1
i =

P n+1,k
i

Ln+1,k
i

, k = 1, . . . K (3.55)

avec
P n+1,0

i = P n
i , Ln+1,0

i = Ln
i (3.56)

pour mieux prendre en compte les couplages entre espèces rapides.

8Le terme poli(tiquement correct) pour désigner l’huile de coude informatique.
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– on notera que la contrainte algébrique (de fait) qui est utilisée pour calculer les espèces
rapides en tn+1 est évaluée en tn. Cela revient à décaler en temps la dépendance des
espèces rapides vis à vis des lentes, alors que la bonne contrainte (voir section consacrée
à la réduction) s’écrit :

cn+1
i =

P n+1
i

Ln+1
i

(3.57)

C’est un des points essentiels qui explique la perte de précision d’une telle implémentation
des méthodes QSSA.

– certains auteurs ([15]) préconisent d’ordonner les espèces rapides. Notons que, de la
même manière, les espèces doivent être ordonnées pour la résolution du système linéaire
par l’algorithme de Gauss-Seidel dans le cadre de Twostep ([57]).

– il est fréquemment recommandé ([15, 16, 40, 53, 57]) de travailler avec des espèces
“lumpées”, définies comme combinaison linéaire des espèces initiales (“the lumping tri-
ck” dans [50], page 81). Une telle technique permet d’améliorer notablement la précision
des schémas QSSA. Les explications diffèrent grandement d’un auteur à l’autre : ar-
gument de conservation de masse pour certains groupes d’atomes ([15, 16, 29]) ou
analogie avec un préconditionnement de système ([53]).
Les lumpings proposés varient également d’un schéma cinétique à un autre, ce qui est
moral, mais d’une manière plus troublante également à schéma fixé.
Il est habituellement défini, sans plus de précision, les espèces suivantes ([16]) :

NOx = NO + NO2 , Ox = NO2 + O3 (3.58)

voire ([15])
O3NO = O3 −NO , NOz = NO3 + N2O5 (3.59)

NOy = NO + NO2 + NO3 + 2N2O5 + HNO2 + HNO4 + PAN (3.60)

et 9

HOx = OH + HO2 , PANX = PAN + C2O3 (3.61)

En particulier, les techniques de lumping sont étroitement liées à la construction des modèles
réduits (voir plus loin).

Un autre point essentiel concerne la résolution de la contrainte algébrique (3.57) : en
quelques mots, les schémas QSSA sont peu précis, non pas du fait de l’hypothèse de quasi-
stationnarité 10, mais parce que la contrainte algébrique est mal résolue numériquement.

3.3.4 Méthodes de type Rosenbrock

Les méthodes de type Rosenbrock fournissent des bons exemples de schémas rapides
et à précision suffisante pour les applications de type pollution atmosphérique (une erreur
relative en deça du %). L’idée générique ([32]) est de remplacer les systèmes non linéaires
qui apparaissent dans les méthodes implicites directement par des systèmes linéaires qui

9On s’arrêtera là.
10Qui est de toute manière faussement sous-jacente.
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ne sont plus construits lors de la résolution des systèmes non linéaires, par exemple avec
l’algorithme de Newton, mais qui sont donnés, dès le départ, avec le schéma considéré 11.
C’est par exemple le cas de la méthode à un pas :

cn+1 = cn + k , (I −∆t
∂f

∂c
(cn))k = ∆tf(cn) (3.62)

pour la résolution de l’EDO
dc

dt
= f(c) (3.63)

Cette méthode correspond bien entendu à la première itération d’un algorithme de Newton
utilisé pour la résolution du système algébrique issu d’un schéma d’Euler implicite.

Une telle méthode se généralise et on définit une méthode de Rosenbrock à s pas par :

cn+1 = cn +
i=s∑
i=1

biki , ki = ∆tf(cn +

j=i−1∑
j=1

αijkj) + ∆t
∂f

∂c
(cn)

j=i∑
j=1

γijkj (3.64)

les coefficients bi, αij et γij étant donnés pour chaque schéma (et fixés par des considérations
de consistance essentiellement).

On se réfère à [14, 56] pour une présentation exhaustive des méthodes de Rosenbrock
et leur application à la simulation de la pollution atmosphérique. Les méthodes, à respec-
tivement deux et quatre pas, ROS2 et RODAS3 sont notamment testées avec succès dans
[22, 44, 59]. Par contre, seule la méthode ROS2 conserve la propriété de positivité des
solutions. Le benchmark [34] confirme que les méthodes de Rosenbrock sont actuellement
les méthodes les plus efficaces en terme de compromis coût-précision pour la pollution at-
mosphérique.

Par exemple, la méthode ROS2 s’écrit :

cn+1 = cn +
1

2
(k1 + k2) (3.65)

(I − γ∆tJ)k1 = f(cn, tn) , (I − γ∆tJ)k2 = f(cn + ∆tk1, tn+1)− 2γ∆tJk1

avec J une approximation du Jacobien de f et γ = 1 + 1/
√

2 qui permet de garantir la
L-stabilité de la méthode.

3.4 Réduction de modèles

Pour finir ce chapitre, on va présenter brièvement le cadre théorique qui sous-tend l’exis-
tence de la raideur numérique.

On a vu que les difficultés rencontrées pour la résolution numérique des systèmes raides
proviennent de la grande disparité des échelles de temps. Modulo un adimensionnement et

11On parle aussi de méthodes linéairement implicites.
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un changement éventuel de base, le système (que l’on a déjà introduit sous une forme ana-
logue pour la présentation des méthodes hybrides) peut alors s’écrire sous la forme suivante
(souvent appelée “lent/rapide”) :

dx

dt
= fL(x, y) , ε

dy

dt
= fR(x, y) (3.66)

avec x (resp. y) les espèces lentes (resp. rapides) et ε un rapport d’échelle de temps ca-
ractéristiques supposé être très petit par rapport à 1.

On peut alors montrer que pour de tels systèmes, il existe après une phase transitoire de
durée O(ε) un modèle réduit donné par :

dx

dt
= fL(x, y) , fR(x, y) = 0 (3.67)

qui approche à O(ε) près le système initial.
Ce système de dimension réduite (sa dimension est la dimension des variables lentes x) est

un système algébro-différentiel défini par un système de contraintes algébriques fR(x, y) = 0
définissant les variables rapides y en fonction des variables lentes x par une relation du type
y = h(x). Par application du théorème des fonctions implicites, ceci nécessite bien sûr que
∂fR/∂y soit inversible (en réalité de valeurs propres à partie réelle strictement négative pour
assurer la convergence en dehors de la couche transitoire vers ce modèle réduit).

Ce théorème (le théorème de Tikhonov ou le théorème de la variété centrale “globale”)
permet donc de donner un cadre à de nombreuses propriétés déjà rencontrées au cours
de ce chapitre et dont un exemple très simple avait été fourni par l’exemple (3.17) : la
non dépendance à des conditions initiales, la très grande stabilité du modèle hors couche
transitoire (le modèle convergeant systématiquement vers la contrainte y = h(x)), l’intérêt
de travailler dans des bases de variables spécifiques (les lumpings s’interprétant comme les
changements de base permettant de partitionner le système sous la forme requise), etc.

Une alternative séduisante à l’utilisation de méthodes implicites est donc la construction
puis la résolution des modèles réduits : les échelles de temps rapides ayant été filtrées, des
algorithmes explicites peuvent alors être utilisés.

En cinétique chimique, les modèles réduits sont une généralisation des techniques clas-
siques de type Approximation de l’Etat Quasi Stationnaire (AEQS ou QSSA en anglais) ou
Approximation de l’Equilibre Partiel. Un exemple est par exemple fourni dans la figure 3.1
par la convergence pour plusieurs jeux de conditions initiales du système NO, NO2 et O3

vers le modèle réduit défini par l’équilibre de la réaction globale :

NO + O3
1→ NO2 , NO2

2→ NO + O3 (3.68)

que l’on ne détaille pas plus (le lecteur averti aura remarqué que ces réactions ne conservent
même pas les éléments).

L’équilibre est alors donné par :

cNOcO3

cNO2

' k2

k1

(3.69)
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Fig. 3.1 – Convergence vers le modèle réduit pour le système NO, NO2 et O3.
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avec ki la constante cinétique de la réaction i.
Un écueil important à l’utilisation de ces méthodes est la difficulté de mise en oeuvre

lorsque le modèle réduit ne peut pas être calculé explicitement ou doit être adapté à chaque
pas de temps (par exemple, sa dimension variant au cours du temps). Par contre, ce cadre
permet de donner un cadre extrêmement puissant pour comprendre le comportement quali-
tatif des modèles et des schémas numériques (par exemple pour les splittings).

Notons pour terminer ce chapitre que ces propriétés (systèmes multi-échelles générant
une raideur numérique et associés à une hiérarchie de modèles) peuvent s’étendre à une
large classe de système :

1. par exemple, pour la modélisation des aérosols, les dynamiques rapides correspondent
à la mise à l’équilibre thermodynamique (entre phase gazeuse et phase particulaire)
des petites particules submicroniques ;

2. en dynamique géophysique, les approximations quasi-géostrophiques pour le champ de
vitesse (équilibré par les gradients de pression) rentrent aussi dans ce cadre théorique.
Les problèmes étant de nature ondulatoire, les valeurs propres sont alors imaginaires
pures le modèle générique étant :

dc

dt
= jλ(c− ceq(t)) +

dceq

dt
, j2 = −1 , λ > 0 (3.70)

Le modèle réduit correspond alors à un modèle “filtré” (ou moyenné) des composantes
initiales des ondes à courte fréquence,

3.5 Exercices

3.5.1 Stabilité

On s’intéresse à l’équation :
dc

dt
= λc, λ < 0 (3.71)

Retrouver la condition de stabilité du schéma d’Euler explicite et montrer que le schéma
d’Euler implicite est inconditionnellement stable.

Les méthodes d’Euler explicite et implicite sont des méthodes de Runge-Kutta, i.e. des
méthodes qui, pour résoudre c′(t) = F (t, c(t)), se mettent sous la forme :

cn+1 = cn + ∆t
∑s

i=1 βiF (tn + γi∆t, cn,i)
où ∀i ∈ J1, sK cn,i = cn + ∆t

∑s
j=1 αijF (tn + γj∆t, cn,j)

(3.72)

À quelle condition une méthode de Runge-Kutta sous la forme (3.72) est-elle explicite ?
Soit A la matrice (αi,j)i,j, b le vecteur (βi)i et e le vecteur (1, · · · , 1)T de longueur s. Pour

l’équation (3.71), écrire le schéma sous la forme cn+1 = R(z)cn où z = λ∆t.
R est la fonction de stabilité. La région de stabilité est définie par S = {z ∈ C/|R(z)| ≤

1}. Déterminer la région de stabilité de la méthode d’Euler explicite.
Une méthode est dite A-stable si S ⊃ C− = {z ∈ C/Re(z) ≤ 0}. Elle est dite L-stable si

limz→−∞ |R(z)| = 0. Montrer que la méthode d’Euler implicite est L-stable.
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3.5.2 Retour sur le splitting

On souhaite montrer que, dans le cas raide, l’analyse classique de l’erreur due à la
séparation d’opérateurs n’est plus valide. On considère l’équation raide :

c′ =
A

ε
c + Bc (3.73)

Calculer l’erreur due au splitting A−B.
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Chapitre 4

Simulation numérique des processus
d’advection-diffusion

Dans le cadre d’une méthode de séparation d’opérateurs, les processus d’advection et
de diffusion sont résolus indépendamment des termes réactifs dans l’équation de dispersion
réactive. Le point le plus difficile est en pratique l’advection (même lorsqu’elle est linéaire)
car des propriétés qualitatives strictes doivent être respectées numériquement : conservation
de la masse, positivité, monotonie.

Ce chapitre est organisé de la manière suivante. Dans la première section, on traite
l’advection linéaire. Après avoir rappelé la base de l’approche lagrangienne (méthode des
caractéristiques), on présente brièvement les notions classiques de stabilité. Le comportement
qualitatif de la solution numérique est étudié à l’aide de la notion d’EDP équivalente qui
permet notamment de préciser la diffusion numérique observée. Une partie spécifique traite
des méthodes permettant de réduire la diffusion numérique (méthodes à limiteurs de flux), ce
qui est en pratique l’enjeu principal de la simulation numérique de cette classe de problèmes.

Dans une seconde section, la simulation numérique de la diffusion est rapidement présentée,
ne présentant pas d’écueil particulier.

4.1 Advection

4.1.1 Modèle. Méthode des caractéristiques.

On considère ici l’advection d’un traceur, de concentration c, dans un milieu de vitesse
supposée connue et constante dans un premier temps, V :

∂c

∂t
+ div(V c) = 0 , c(x, t = 0) = c0(x) (4.1)

avec des conditions aux limites si nécessaire (domaine non borné).

Dans le cas où V est constante, il y a bien entendu une solution évidente (figure 4.1) :

c(x, t) = c0(x− V t) (4.2)

55
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c

t=0 t>0

x

Fig. 4.1 – Advection d’un traceur

Pour préparer le cas général, on peut retrouver le résultat précédant en recourant à une
approche lagrangienne (la méthode des caractéristiques). Soit Xx0(t) la courbe caractéristique
issue de la position initiale x0 :

dXx0

dt
= V , Xx0(0) = x0 (4.3)

et soit c̄x0(t) = c(Xx0(t), t) la concentration du traceur le long de cette courbe. On a
évidemment :

dc̄x0

dt
=

∂c

∂t
+

dXx0

dt

∂c

∂x
= 0 (4.4)

c’est à dire que c̄x0(t) est constant et vaut donc c0(x0). Ceci implique également que les
courbes caractéristiques sont des droites :

Xx0(t) = x0 + V t (4.5)

On a donc la solution en (x, t) lorsque la vitesse est constante : les caractéristiques sont alors
des droites parallèles et il ne passe qu’une caractéristique en (x, t), celle associée au point
x0 = x − V t. Par conservation du traceur le long de la caractéristique, on a directement le
résultat (figure 4.2).

L’extension du modèle précédent au cas d’un champ de vitesse à divergence nulle (div V =
0) est immédiate en remarquant que l’on a alors :

div(V c) = V · ∇c (4.6)

Dans le cas plus physique où le champ de vitesse V est relié à la densité du fluide “porteur”
ρ par l’équation de continuité :

∂ρ

∂t
+ div(V ρ) = 0 (4.7)



4.1. ADVECTION 57

t

xx−Vt

Fig. 4.2 – Méthode des caractéristiques. Cas d’une vitesse constante.

il est plus aisé de travailler pour décrire le traceur avec sa fraction massique que l’on notera
par exemple m = c/ρ. Il est direct de constater que l’on a alors :

∂m

∂t
+ V · ∇m = 0 (4.8)

et le long des caractéristiques, m = c/ρ est conservé. Les caractéristiques correspondent alors
exactement aux lignes de champ (tangentes au champ de vitesse et qui ne se coupent pas).

4.1.2 Propriétés qualitatives

Plusieurs propriétés découlent de manière directe de ce résultat :

1. la positivité des solutions si on part d’une condition initiale positive ;

2. la monotonie : il y a un “principe du maximum” pour l’advection, ie on ne doit pas
créer d’extrema dans la solution qui n’existent pas dans la condition initiale ; il est à
noter que dans le cas linéaire, “positivité” et “monotonie” sont étroitement associées.

Un schéma numérique va donc devoir respecter ces propriétés qualitatives clés.

4.1.3 Quelques schémas “évidents” de discrétisation spatiale

On se donne une discrétisation de l’axe des x selon (xi) avec un pas de maillage supposé
constant ∆x (figure 4.3). On discrétise également le temps selon une suite (tn) avec un pas
de temps supposé egalement constant ∆t.

On va dans un premier temps construire des schémas numériques avec la méthode des
lignes, ie en discrétisant d’abord le problème en espace avant de résoudre le problème en
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xi−1 xi

Ωi−1

xi−1/2

x

Fig. 4.3 – Maillage

temps. On notera par abus ci(t) ' c(xi, t), l’indice i correspondant ici à un point de maille
et non à une espèce (on advecte en parallèle les diverses espèces).

Une forme conservative du schéma numérique est définie par :

dci

dt
=

fi−1/2 − fi+1/2

∆x
(4.9)

où le flux (entrant) fi−1/2 approche le flux au niveau de la facette xi−1/2 (V c(x−∆x/2, t)).
Cette forme garantit bien évidemment la conservation de la masse.

Un premier schéma évident, en supposant que V > 0, est de faire l’approximation pour
le flux :

fi−1/2 = V ci−1 (4.10)

ou, ce qui revient au même, d’approcher par différences finies le gradient spatial selon :

c(x−∆x) = c(x)−∆x
dc

dx
(x) + . . . (4.11)

ce qui conduit au schéma :
dci

dt
= V

ci−1 − ci

∆x
(4.12)

On appelle classiquement ce flux le flux upwind ou décentré ou encore donor-cell, chacune
des terminologies étant évidente.

Une seconde approche pourrait être d’approcher le flux entrant au niveau de la facette
en xi−1/2 par :

fi−1/2 = V
ci−1 + ci

2
(4.13)

ou de manière équivalente d’utiliser le développement de Taylor :

dc

dx
(x) ' c(x + ∆x)− c(x−∆x)

2∆x
+ . . . (4.14)

On obtient alors le flux centré :
dci

dt
= V

ci−1 − ci+1

2∆x
(4.15)
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4.1.4 Discrétisation temporelle

On notera cn
i la solution au temps tn et en xi. Par exemple, pour le flux upwind défini

précédemment, plusieurs discrétisations en temps sont possibles, parmi lesquelles le schéma
upwind explicite obtenu avec un schéma d’Euler explicite :

cn+1
i − cn

i

∆t
= V

cn
i−1 − cn

i

∆x
(4.16)

Cette manière de procéder (discrétisation spatiale pour obtenir une EDO puis discrétisation
en temps) définit ce que l’on appelle communément la méthode des lignes.

Notons que l’on aurait pu directement proposer ce schéma de discrétisation en discrétisant
de manière conjointe temps et espace (on parle alors souvent de schéma DST pour “Direct
Space Time”). Une manière directe de procéder aurait été d’utiliser la relation exacte :

c(xi, tn+1) = c(xi − V ∆t, tn) (4.17)

puis de chercher une interpolation par rapport aux points de discrétisation permettant d’es-
timer c(xi − V ∆t, tn). Dans le cas du schéma upwind, si V > 0 et V ∆t ≤ ∆x (on reviendra
sur cette condition par la suite), il est licite d’interpoler xi − V ∆t entre xi−1 et xi. Une
interpolation linéaire donne directement le schéma upwind écrit sous la forme :

cn+1
i = (1− a)cn

i + acn
i−1 (4.18)

avec a le nombre de Courant-Friedrichs-Lewy (CFL) défini dans la section suivante comme :

a = V
∆t

∆x
(4.19)

De la même manière, on peut définir une méthode d’ordre 3 (le schéma DST3) par :

cn+1
i = γ−2c

n
i−2 + γ−1c

n
i−1 + γ0c

n
i + γ1c

n
i+1 (4.20)

avec γ−2 = −a(1 − a2)/6, γ−1 = a(2 − a)(1 + a)/2, γ0 = (2 − a)(1 − a2)/2 et γ1 = −a(2 −
a)(1− a)/6.

4.1.5 Stabilité et ordre d’un schéma

De manière identique à ce qui a été présenté pour les EDOs (chapitre 3), l’erreur de
discrétisation numérique comprend deux éléments ;

– une erreur locale liée à l’erreur de discrétisation sur un pas de temps (fonction de l’ordre
du schéma) ;

– une propagation des erreurs antérieures (dont le comportement est donné par une étude
de stabilité).

L’erreur locale se calcule en remplaçant dans l’algorithme itératif la solution approchée cn
i

par la solution exacte c(xi, tn). Par exemple, pour le schéma upwind, on définit le résidu ρn
i

par :
c(xi, tn+1)− c(xi, tn)

∆t
− V

c(xi−1, tn)− c(xi, tn)

∆x
= ρn

i (4.21)
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Par développement limité, on obtient aisément ρn
i = O(∆t) + O(∆x).

On a alors directement pour l’erreur globale εn
i = c(xi, tn)− cn

i par soustraction :

εn+1
i − εn

i

∆t
− V

εn
i−1 − εn

i

∆x
= ρn

i (4.22)

qui fait clairement apparâıtre deux contributions à l’erreur.
L’étude de la stabilité est liée à la propagation des erreurs au cours du temps. La stabilité

du schéma numérique est classiquement étudiée par l’analyse dite de Neumann en considérant
une condition initiale donnée par un mode de Fourier. En se restreignant à l’intervalle [0, 2π]
avec des conditions aux limites périodiques (sans perte de généralité), on considère alors le
mode de Fourier exp(jkx) avec j2 = −1 et on cherche une solution de la forme :

cn
i = (rk)

n exp(jkxi) (4.23)

Le point clé est le comportement du coefficient d’amplification rk, qui doit rester de norme
inférieur à 1 pour tout mode de Fourier k. En effet, par superposition, pour toute condition
initiale périodique c0(x) =

∑
k(c0)k exp(jkx), on alors :

ci
n =

∑

k

(rk)
n exp(jkxi) (4.24)

soit :
||cn||2 =

∑
i

|ci
n|2 ≤ ||c0||2 (4.25)

Par exemple, pour le schéma upwind explicite, on obtient directement :

cn+1
i

cn
i

= 1 + a(exp(jk∆x)− 1)
∆
= rk (4.26)

La stabilité est assurée par |rk| ≤ 1 et ce pour tous les modes de Fourier. Autrement dit
avec :

|rk|2 = 1− 2a(1− a)(1− cos(k∆x)) (4.27)

on obtient (on se place depuis le début dans le cas V ≥ 0) :

a =
V ∆t

∆x
≤ 1 (4.28)

que l’on appelle classiquement la condition de Courant-Friedrich-Lewy (condition CFL).
Notons que cette condition aurait pu être obtenue en demandant à respecter la positivité

de la solution écrite sous la forme :

cn+1
i = (1− a)cn

i + acn
i−1 (4.29)

Il est à noter que cette condition est d’autant plus pénalisante pour le choix des pas de
temps que le champ de vitesse est élevé et surtout que le maillage est fin. Ceci signifie en
pratique, par exemple dans le cas de la simulation atmosphérique, que la condition CFL est
contraignante pour les applications à petite échelle.
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4.1.6 Comportement qualitatif : notion d’EDP équivalente

Il est “physiquement” clair qu’une propriété qualitative importante des schémas numériques
présentés ci-dessus va être la génération d’une diffusion numérique artificiellement créée par
la discrétisation.

Par exemple, pour le schéma upwind, prendre pour le flux fi−1/2 = V ci−1 revient à
considérer que toute la matière dans la cellule Ωi−1 (y compris celle qui vient de rentrer dans
cette cellule) contribue immédiatement au flux sortant en xi−1/2.

Il est à noter, toujours dans le même ordre d’idée qualitative, que le comportement du
schéma centré sera probablement moins diffusif. En effet, le flux se calcule à partir du flux
upwind en rajoutant une correction “antidiffusive” selon :

fi−1/2 = V ci−1 +
V

2
(ci − ci−1) (4.30)

Pour la terminologie, il suffit de remarquer que si ci > ci−1, la correction consiste à rajouter
de la matière dans la cellule Ωi et à enlever dans la cellule Ωi−1 (ce qui est l’inverse de ce
qu’aurait produit un flux de diffusion).

Ces remarques intuitives sont confirmées par les résultats de la figure 4.4.
Le comportement qualitatif des schémas numériques peut s’étudier de manière plus

systématique par le recours à la notion d’EDP équivalente, une EDP qu’approche le schéma
numérique de manière plus fine que le modèle d’advection. L’étude qualitative du schéma
se fait alors sur cette EDP, étant plus aisée sur un cas continu que sur un cas discret (voir
ci-après pour s’en convaincre).

Par exemple, pour le schéma upwind, en allant plus loin dans le développement de Taylor :

c(x−∆x)− c(x)

∆x
= − dc

dx
(x) +

∆x

2

d2c

dx2
(x) + O(∆x2) (4.31)

ce qui montre que le schéma upwind est en réalité une approximation à l’ordre 2 de l’EDP :

∂c

∂t
+ V

∂c

∂x
=

V ∆x

2

∂2c

∂x2
(4.32)

ce qui justifie évidemment le caractère diffusif du schéma.
Pour le schéma centré, avec :

c(x−∆x)− c(x + ∆x)

2∆x
= − dc

dx
(x)− ∆x2

6

d3c

dx3
(x) + O(∆x4) (4.33)

l’EDP équivalente est (à l’ordre 4) :

∂c

∂t
+ V

∂c

∂x
= −V ∆x2

6

∂3c

∂x3
(4.34)

qui a un comportement dispersif (les modes de Fourier ne sont pas advectés à la même vi-
tesse).
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De manière générale, l’étude qualitative de l’EDP

∂c

∂t
+ V

∂c

∂x
= α

∂2c

∂x2
+ β

∂3c

∂x3
, ck(x, 0) = Ak(0) exp(jkx) (4.35)

est directement donnée en cherchant une solution de la forme Ak(t) exp(jk(x − ωt)). En
identifiant les parties réelles et imaginaires, on trouve :

ck(x, t) = Ak(0) exp(−k2αt) exp(jk(x− V t)− jkβt) (4.36)

à comparer à la solution de l’équation d’advection Ak(0) exp(jk(x − V t)). On a donc bien
un comportement diffusif lié à α et un comportement dispersif (un déphasage) lié à β.

Les solutions des méthodes “upwind”, “centré” et “DST3” sont tracées dans la figure
4.4 pour une nombre de CFL égal à 0.4 après 20 pas de temps. On note le caractère très
diffusif du schéma upwind, le caractère dispersif du schéma centré et le bon comportement
du schéma DST3, qui apparâıt moins diffusif que le schéma “upwind” mais pour lequel la
positivité n’est malheureusement plus assurée.

4.1.7 Méthodes à limiteurs de flux

En revenant sur les propriétés qualitatives que l’on souhaitait voir satisfaites par le schéma
numérique, il apparâıt donc difficile de pouvoir concilier à la fois :

1. la positivité de la solution (de manière équivalente pour le cas linéaire, la monotonie,
ie la non-création d’extrema artificiels) ;

2. une faible diffusion numérique.

Ces deux points sont évidemment clés si l’on cherche à suivre un traceur issu d’une émission
ponctuelle accidentelle (par exemple un radioélément) dans le cas par exemple de la disper-
sion atmosphérique. Le critère de positivité est clair et il est à noter que l’on se trouve dans
le cas le plus défavorable d’un pulse pour la condition initiale...

Réanalysons qualitativement les schémas upwind et centré présentés précédemment. Le
cas général est celui des schémas à 3 points avec :

cn+1
i = αi c

n
i−1 + βi c

n
i + γi c

n
i+1 (4.37)

1. Le critère de positivité implique que les coefficients αi, βi et γi sont positifs ou nuls.

Notons que cette condition est très restrictive car elle permet de garantir la positivité
dans tous les cas (ie dans le cas extrême où toutes les concentrations sont nulles sauf
dans une maille à tn). Dans le cas d’une situation “réelle”, une condition de positivité
plus souple (mais dépendant de la situation) pourrait être suffisante. C’est ce que l’on
va utiliser plus loin pour définir les limiteurs de flux.

2. Le critère de conservation de masse implique que :

αi+1 + βi + γi−1 = 1 (4.38)

c’est à dire que deux jeux de coefficients sont suffisants pour définir le schéma.
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Fig. 4.4 – Comparaison des méthodes upwind, centrée et DST3 pour un nombre de CFL
égal à 0.4 au bout de 20 itérations.
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3. Afin d’étudier le comportement diffusif du schéma, on va le réécrire sous la forme
équivalente suivante (on a noté ci+1/2 = (ci + ci+1)/2) :

cn+1
i = cn

i − (ai+1/2c
n
i+1/2− ai−1/2c

n
i−1/2) + (νi+1/2(c

n
i+1− cn

i )− νi−1/2(c
n
i − cn

i−1)) (4.39)

qui fait apparâıtre des termes de type advectif (ai+1/2) et des termes de type diffusif
(νi+1/2). Les deux jeux de coefficients ai+1/2 et νi+1/2 sont donnés par :

αi = νi−1/2 +
1

2
ai−1/2

γi = νi+1/2 − 1

2
ai+1/2

βi = 1− νi+1/2 − 1

2
ai+1/2 − νi−1/2 +

1

2
ai−1/2

(4.40)

La condition de positivité implique pour (α) et (γ) que :

1

2
|ai+1/2| ≤ νi+1/2 (4.41)

Par ailleurs, pour assurer l’ordre du schéma, a = V ∆x/∆t (ce qui justifie la notation). Ceci
signifie donc que la diffusion numérique (ν ≥ 0) est nécessaire pour garantir la
positivité systématique.

Si on revient au schéma upwind, on a directement avec γi = 0, ν = a/2, c’est à dire que
le schéma upwind est celui qui garantit, dans tous les cas de figure, la positivité avec une
diffusion minimale... dont on a vu pourtant qu’elle n’est guère acceptable en pratique !

L’idée des méthodes à flux corrigés (ou des méthodes à limiteurs de flux) est de pouvoir
descendre en dessous de la limite ν = a/2 en fonction de la forme de la solution, puisqu’en
pratique la condition de positivité est trop “frileuse”. La stratégie va alors être d’utiliser le
schéma upwind lorsque l’on est loin des gradients (son caractère diffusif n’est pas gênant
et il garantit la positivité) mais d’utiliser un schéma d’ordre élevé peu diffusif proche des
gradients.

Supposons que l’on dispose d’un schéma d’ordre élevé moins diffusif que le schéma up-
wind, que l’on écrit sous la forme relativement générale (pour son flux) suivante :

fi+1/2 = V (ci + Ψ(θi)(ci+1 − ci)) , θi =
ci − ci−1

ci+1 − ci

(4.42)

θi est un indicateur du caractère “lisse” de la solution. Pour une solution constante, θ ' 1,
proche d’un gradient θ ¿ 1 ou À 1.

Par exemple, pour le schéma DST3, la fonction de flux s’écrit :

Ψ(θ) =
1

6
[(2− a)(1− a) + (1− a)2θ] (4.43)

Dans le cas général, on obtient après calcul la formule de récurrence suivante :

cn+1
i = (1− aφi)c

n
i + aφici−1 , φi = 1 +

Ψ(θi)

θi

−Ψ(θi−1) (4.44)
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On va alors construire un schéma garantissant la positivité en imposant que 0 ≤ aφi ≤ 1 :
pour cela, on va remplacer Ψ par le flux limité ΨL avec :

0 ≤ ΨL ≤ 1 , 0 ≤ ΨL/θ ≤ µ (4.45)

où µ est un paramètre numérique à choisir. Ce choix de limitation des flux correspond au
limiteur de Koren-Sweby (mais d’autres choix sont possibles).

Il suffit pour cela de choisir :

ΨL = max(0, min(1, µθ, Ψ)) (4.46)

Ceci donne comme condition de positivité a(1+µ) ≤ 1 et détermine µ en fonction du nombre
de CFL a (localement). En pratique, on prend a = (1− ν)/ν.

4.1.8 Extension aux cas 2D et 3D

En pratique, l’advection a lieu dans un cas bi ou tridimensionnel et non pas dans une seule
direction d’espace. Plusieurs approches sont alors possibles pour l’extension des méthodes
précédentes :

– on peut effectuer un splitting directionnel, en résolvant de manière successive chacune
des directions. Un inconvénient immédiat est alors la perte de monotonie, en particulier
le fait qu’un champ de conditions initiales constant ne reste pas constant dans un champ
de vitesse à divergence nulle.
Des corrections sont alors nécessaires mais on ne précise pas plus ici.

– une alternative est d’effectuer une résolution couplée des directions en agrégeant les
termes liés à chaque direction. Un inconvénient est cependant la sévérisation de la
contrainte CFL. Par exemple pour un cas bidimensionnel (x, y) avec un champ de
vitesse V = (u, v), on obtient :

( |u|
∆x

+
|v|
∆y

)
∆t ≤ 1 (4.47)

évidemment plus contraignante que la contrainte unidimensionnelle.

4.2 Diffusion

4.2.1 Modèle

On considère ici la diffusion d’un traceur, de concentration c, sous l’effet d’une diffusion
K :

∂2c

∂t2
= div(K∇c) , c(x, t = 0) = c0(x) (4.48)

avec des conditions aux limites si nécessaire (domaine non borné).
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4.2.2 Algorithme aux différences finies

La discrétisation numérique ne pose pas de problème numérique spécifique. On utilise
classiquement une discrétisation à 3 points fondée sur un développement de Taylor. Par
exemple, pour la méthode des lignes, la discrétisation spatiale donne :

dci

dt
=

Ki+1/2
ci+1 − ci

∆x
−Ki−1/2

ci − ci−1

∆x
∆x

(4.49)

avec Ki+1/2 = K(xi+1/2).
Cette EDO doit être résolue. Pour le cas d’une diffusion constante, si on utilise la méthode

d’Euler explicite, on a directement :

cn+1
i − cn

i

∆t
=

K

∆x2
(cn

i+1 − 2cn
i + cn

i−1) (4.50)

L’étude de stabilité de la discrétisation temporelle de cette approximation par différences
finies peut se faire de manière classique par une analyse de Neumann en calculant les coeffi-
cients d’amplification associés aux modes de Fourier.

En utilisant la condition initiale exp(jkxi) correspondant au mode k de Fourier, on a
après un calcul aisé :

cn+1
i

cn
i

= 1− 4∆t

∆x2
sin2(k∆x/2)

∆
= rk (4.51)

La stabilité est assurée par |rk| ≤ 1 et ce pour tous les modes de Fourier. Autrement dit :

K∆t

∆x2
≤ 1

2
(4.52)

que l’on appelle classiquement la condition de Fourier. Cette condition de stabilité n’est
évidemment pas nécessaire pour des résolutions implicites, qui sont en général préférées
pour l’intégration de la diffusion. Des algorithmes d’inversion de matrices doivent alors être
spécifiés. Du fait de la forme tridiagonale de la matrice, l’inversion se fait aisément (algo-
rithme de Thomas par exemple).

4.3 Exercices

4.3.1 Discrétisation de la diffusion

Écrire le schéma de discrétisation centré à trois points pour le terme de diffusion, dans
le cas unidimensionnel et pour un coefficient de diffusion constant.

On considère l’équation de diffusion sur l’intervalle [0, 1] divisé en n sous-intervalles. On

note h =
1

n
le pas de discrétisation et c la solution de l’équation discrétisée. On impose

des conditions de Neumann aux frontières, approchées par des discrétisations d’ordre 1 :
c1 − c0

h
= 0 et

cn − cn−1

h
= 0. On note c̃ = (c1, c2, · · · , cn−1). Écrire l’équation de diffusion

discrétisée (spatialement), par le schéma précédent, sous la forme
dc̃

dt
= kAc̃ où A est une

matrice à déterminer.
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4.3.2 Stabilité L2

On considère, en dimension 1, l’équation d’advection linéaire
∂c

∂t
+V

∂c

∂x
= 0. La solution

discrétisée est notée cn
j où n est l’indice temporel et j l’indice spatial. On note ∆t le pas

temporel et ∆x le pas temporel. Le schéma numérique est tel que :

cn+1
j =

q∑

k=−p

akc
n
k+j

On s’assure de la stabilité L2(Z) en introduisant ĉn(z) =
∑

j∈Z cn
j e−ij∆xz, avec i2 = −1.

Écrire ĉn+1(z) sous la forme R(z)ĉn(z).
En déduire pourquoi on s’assure de la stabilité en s’assurant que ‖cn‖2 est borné si c0

j =
eij∆xz, ceci pour tout z ∈ [−π, π].

Discrétiser l’équation d’avection par un schéma centré en espace et un schéma d’Euler ex-
plicite en temps. Étudier, par la méthode précédente, la stabilité du schéma obtenu.

Étudier la stabilité du schéma de Lax-Friedrichs :

cn+1
j =

cn
j+1 + cn

j−1

2
− ∆t

2∆x

(
V cn

j+1 − V cn
j−1

)

4.3.3 Schéma de Lax-Wendroff

En utilisant la formule de Taylor à l’ordre 2, retrouver le schéma de Lax-Wendroff pour
l’advection :

cn+1
j = cn

j −
V ∆t

2∆x
(cn

j+1 − cn
j−1) +

V 2∆t2

2∆x2
(cn

j+1 − 2cn
j + cn

j−1)

Quel est l’ordre du schéma ?

4.3.4 Variation totale décroissante

Montrer que le schéma “upwind” est à variation totale décroissante (VTD1), c’est-à-dire
que :

∑
j |cn+1

j − cn+1
j−1 | ≤

∑
j |cn

j − cn
j−1|.

1TVD en anglais : “total variation diminishing”.
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