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Introduction

Modélisation et simulation en environnement /géophysique

Les problemes rencontrés en modélisation de I’environnement, notamment géophysique
(océanographie, hydrologie, météorologie, pollution) ont un certain nombre de spécificités :

1. ils sont d’abord tres fortement multi-disciplinaires couplant mécanique des fluides (en
clair les équations de Navier-Stokes pour décrire I’écoulement du fluide considéré : air
ou eau), physique (pour décrire le comportement microphysique, par exemple des par-
ticules), chimie ou biologie (pour I’évolution des especes considérées), transfert radiatif
(les rayonnements terrestre et solaire), etc.

Un point clé est alors la nécessité d’effectuer des couplages de modéles, qui constituent
le point de développement de ces domaines.

2. la problématique des rétroactions (des “feedbacks”) est dans ce contexte cruciale, la
question étant de préciser jusqu'a quel point il est pertinent de coupler.

Un exemple caractéristique est fourni par U'interaction chimie/rayonnement/nuage (et
le role des aérosols dans 1'atmosphere) qui est I'un des points encore largement ouverts
pour I’évaluation du changement climatique.

3. les problemes traités sont souvent de trés grande dimension (des centaines d’especes
chimiques pour la chimie atmosphérique).

4. les problemes sont multi-échelles, de nombreuses échelles étant a considérer simul-
tanément : par exemple, en chimie atmosphérique, les échelles temporelles liées aux
processus chimiques s’étendent sur plusieurs ordres de grandeurs (des espeéces radica-
laires aux especes stables), les échelles spatiales de quelques nanometres (la formation
des aérosols) a I’échelle de I’écoulement, géophysique.

Ceci conduit a de nombreuses difficultés d’ordre numérique.

5. de maniere induite, la problématique de la paramétrisation des processus est un point
clé : comment représenter des processus définis a petite échelle (en temps et en espace)
dans des modeles dont le “grain” (spatial et temporel) est de fait relativement grossier ?

6. les milieux représentés sont tres hétérogenes et de tres grandes incertitudes existent

dans les données nécessaires a 'utilisation des modeles numériques (conditions initiales
de problemes d’évolution, conditions aux limites, description des milieux géophysiques :
topographie, occupation du terrain, etc).
Dans ce contexte, le couplage entre modeles numériques et données observées, fournies
par des réseaux de mesures (terrestres mais aussi de plus en plus satellitaires - le
domaine de I’Observation de la Terre-) est une approche incontournable. On parle alors
d’assimilation de données, pour laquelle des approches méthologiques sont nécessaires.
Ce point est essentiel notamment pour des applications des modeles a la prévision.

De maniere schématique, la modélisation dans ce domaine s’articule autour des trois
activités suivantes :

1. la modélisation physique a proprement parler, pour laquelle la problématique de la
paramétrisation sous-maille et la confrontation aux données de terrain sont cruciales;



2. la simulation numérique des modeles construits;
3. l'assimilation de données.

Ce cours s’insere dans un ensemble de trois cours et a pour objet le second theme. La
modélisation, avec 'exemple spécifique de la pollution atmosphérique, fait I'objet du cours
[47], assimilation de données du cours [46].

Dans un premier temps, le cours s’est focalisé sur les modéles de dispersion réactive de
traceurs (par exemple dans I'atmospheére ou dans un autre milieu). Cet exemple est spécifique
mais permet de balayer un grand nombre de méthodes largement génériques et utilisées dans
d’autres applications. L’objectif de ce cours est, de maniere plus générale, de donner les
principaux éléments de calcul scientifique appliqués a la simulation numérique des problemes
que l'on rencontre en environnement géophysique.

Organisation

Ce cours est organisé de la maniere suivante.

Dans le chapitre 1, on présente (rappelle?) le modele de dispersion réactive.

Dans le chapitre 2, on étudie une classe de méthodes couramment utilisées dans ce do-
maine, les méthodes de séparation d’opérateurs (splitting).

Dans le chapitre 3, le traitement spécifique des termes réactifs (chimiques par exemple) est
abordé, notamment autour de la problématique des modeles raides (présentant une grande
dispersion des échelles de temps).

Enfin, la résolution des termes de transport (advection et diffusion) est traitée dans le
chapitre 4.
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Chapitre 1

Equation de dispersion réactive

L’objectif de ce chapitre est de rappeler brievement les équations de dispersion réactive
de traceurs dans un milieu géophysique (air, eau).

On rappelle I'équation de dispersion réactive dans la section 1 en détaillant les processus
d’advection, de diffusion et de réactions. Un point clé est I'hypothese de dilution qui consiste
a découpler les équations de la dynamique du fluide de celles de ’évolution des traceurs.

Les principaux processus sont ensuite classifiés dans la section 2 (c’est ce qui les rattachera
a des familles d’algorithmes numériques).

Enfin, on conclut en discutant brievement du choix des méthodes de discrétisation spa-
tiale.

1.1 Equations de dispersion réactive

1.1.1 Hypothese de dilution

On cherche a décrire dans un milieu donné (atmosphere, océan, fleuve) la dispersion d'un
jeu d’especes chimiques (ou biologiques), supposées réagir entre elles.

En toute rigueur, I’évolution du systéme couplé (fluide+traceurs) est donnée par les
équations de Navier-Stokes réactives. On fait néanmoins de maniere classique une hypothése
de dilution qui consiste a découpler d’'une part la dynamique du fluide, d’autre part les
concentrations de traceurs. Ceci revient notamment a négliger dans 1’équation d’évolution
d’énergie interne (ou de température) la contribution die aux réactions chimiques et a figer
'interaction matiere/rayonnement. Par exemple, dans le cas de 'atmosphere, la premiere
approximation est bien vérifiée dans la troposphere alors que la seconde revient a négliger
un moteur clé de la dynamique atmosphérique.

Dans ce cas de figure, les champs dynamiques (vent, diffusion, température, humidité
de P’air pour le cas atmosphérique) sont donc calculés indépendamment ou paramétrisés,
et sont utilisés comme des données connues dans ’équation de dispersion pour les traceurs
considérés.

Il est a noter pour finir qu’une telle hypothese n’est évidemment plus valable pour des
systemes ou le couplage chimie/dynamique est beaucoup plus important (par exemple en

9



10 Chapitre 1 - Dispersion réactive

combustion). Les équations de Navier-Stokes réactives doivent alors étre traitées, ce qui
dépasse le cadre de ce cours et fait appel pour partie a d’autres méthodes.

1.1.2 Equations d’advection-diffusion-réaction

Dans le cadre d'une hypothese de dilution, 1’évolution des traceurs indicés par i obéit
alors a un systeme d’Equations aux Dérivées Partielles donné par :

ﬁci

ot

+ div(V(z,t)c;) = div(Kpmeec Vi) + Xi(e, T(z,t),t) + Si(x, t) (1.1)

ou x et t désignent respectivement les coordonnées d’espace et de temps, ¢ est le vecteur des
concentrations d’especes (indicées par i), V(x,t) est le champ de vitesse du fluide, K, oiec
est la matrice de diffusion moléculaire (a priori non diagonale, du fait de la diffusion inter-
moléculaire), T'(x,t) est le champ de température.

S;(x,t) est le terme source pour l’espece i, qui modélise le cas échéant 1’émission par source
fixe. Dans le cas atmosphérique (figure 1.1), ceci correspond typiquement & des émissions
par cheminées d’usine ; dans le cas hydrologique, a une source ponctuelle de pollution.

Enfin, y; désigne le taux de production chimique de I'espece 7, sur lequel on reviendra
plus spécifiquement par la suite.

Pour terminer, I’équation précédente n’est en réalité valable que dans le cas d’un fluide
incompressible (densité p constante). Dans le cas général, la densité du fluide porteur vérifie
I’équation de continuité :

9 +div(pV) =0 (1.2)
ot

et la “bonne” variable pour le traceur est son rapport de mélange que 1’on notera m; = ¢;/p,

dont I’évolution est donnée par :

3;:‘ +V . -Vm; = %diV<KmozecV(pmi)) X xi(pm, T(x,% t) + (1)

(1.3)

1.1.3 Modeles moyens

En réalité, cette équation d’évolution, si elle est valide au niveau “microscopique”, n’est
pas applicable telle quelle pour des écoulements turbulents. Ceux-ci peuvent notamment étre
caractérisés par une grande disparité des échelles spatiales : par exemple, pour la cas d’une
turbulence d’origine dynamique (cisaillement de vitesse -typiquement le cas d’une couche
limite dynamique), l’analyse de Kolmogorov donne un rapport d’échelle entre la plus petite
échelle caractéristique (1) et la plus grande (L) en fonction du nombre de Reynolds (Re)
selon :

L
T Re3/* (1.4)

Pour des écoulements fortement turbulents (Re > 1), il est évidemment impossible de
simuler I’ensemble des échelles en 3 dimensions. On a alors recours de maniere classique a
des approches de moyennisation.
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12 Chapitre 1 - Dispersion réactive

En omettant de préciser la définition rigoureuse de I'opérateur de moyenne (en un sens
spatial, en un sens ergodique, avec ou sans une pondération par la densité -moyenne de
Favre-...), on suppose donc a présent que les champs étudiés se décomposent selon :

U= (U) 4+ 0 (1.5)

avec (V) une grandeur moyenne et U’ une fluctuation. Parmi les principales propriétés
“demandées” a l'opérateur de moyenne, on retiendra qu’il commute avec les opérateurs de
dérivation (en temps et en espace) et que <\IJ/> =0.

De maniere directe, une telle décomposition appliquée a 1’équation précédente pour les
traceurs c et pour le champ de vitesse V' conduit apres moyennisation a 1’équation :
Ne) | .. . )
S+ div(V (e, 6) (@) = div(K e Ve)) + (e, T, 8),8)) + (Sifa, 1) = div({c]V))

(1.6)

Il est direct de remarquer que les termes linéaires sont transposés tels quels dans 1’équation
moyennée. Les termes non-linéaires (en I'occurrence quadratiques) font apparaitre des corrélations
entre variables (la moyenne de produits de fluctuations). Le probleme de la fermeture des
équations moyennées revient alors a exprimer ces corrélations en fonction des grandeurs
résolues (les valeurs moyennes).

Revenons sur les deux principaux termes a fermer dans 1’équation précédente :

1. La moyennisation de I’équation de continuité pour 1’espece i conduit a 'introduction
s . 7 .7 . . / !/
d’un terme de flux turbulent, non spécifié, associé au terme d’advection : div <cz~V >

Le probleme de la fermeture des équations est résolu de maniere classique a ’aide de
la théorie du gradient (ou théorie K) qui revient a exprimer le flux turbulent d’une
quantité advectée comme inversement proportionnel au gradient de la valeur moyennée.
Pour un champ WV, la paramétrisation est donc du type :

urb

<\1ﬂv’> — KY (2,0 V() (1.7)

avec K,' , la diffusion turbulente dépendant de l'espace et du temps (en pratique
donnée en fonction des champs dynamiques et de leurs gradients).

Il est a noter que cette paramétrisation appliquée a la concentration ¢; ou a la fraction
massique m; ne conduit pas a la méme fermeture. Comme l’équation de continuité
moyennée s’écrit usuellement sous la forme :

o) | _
— T div((p) (V) =0 (1.8)

il est plus cohérent d’appliquer la paramétrisation a la fraction massique selon :

Avec ¢; = pm;, on fait 'approximation usuelle :

GV = (p)ym V' + (mi) p,V' = (o) m;V’ (1.10)
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La paramétrisation donne alors pour la concentration :

() = = (o) Kua 52 (111)
{p)

Pour le fluide (I'air), supposé non réactif, I’équation d’advection moyennée redonne

'équation de continuité (1.8) avec ¢; = p, ce qui n’aurait pas été le cas en appliquant

directement la paramétrisation a la concentration. On aurait alors fait apparaitre un

membre de droite dans I’équation de continuité moyennée.

Notons que la diffusion turbulente est supposée étre la méme pour toutes les especes,

la diffusion inter-especes n’étant pas prise en compte ; autrement dit, la matrice Ky,

est diagonale.

En pratique, on fait en général 'approximation K., > K oe.- Par exemple, pour

le cas atmosphérique, la diffusion est uniquement turbulente en dehors d’une couche

laminaire a proximité du sol, ce qui justifie cette simplification.

2. Le processus de moyennisation conduit de méme, en toute rigueur, a un probleme de
fermeture pour la chimie non linéaire.
A une réaction bimoléculaire de réactants notés symboliquement X; et X; est associée
une production chimique proportionnelle & (voir annexe) :

(eics) = () {e5) + (cic)) (1.12)

N 7 . o7 .
ou le terme de corrélation <cicj> est inconnu.

Ces termes sont habituellement négligés et on fait donc dans I’équation de dispersion
I'approximation (dite parfois du réacteur homogéne -well stirred tank reactor-) :

(x(e)) = x(() (1.13)

Une condition de validité est typiquement que les temps caractéristiques de la chimie
sont beaucoup plus grands que ceux associés aux processus d’homogénéisation. No-
tons que le terme de corrélation négligé correspond a ce que 'on appelle un terme de
ségrégation : .
cicj>
{ci) (e5)
avec I intensité de ségrégation (dont on vérifie immédiatement qu’elle vérifie I, >
—1).
Si deux especes ne sont pas corrélées, I, = 0. Dans le cas contraire, 'hypothese de
réacteur homogene peut conduire a surestimer ou sous-estimer la production chimique
effective a [’échelle du modéle. Le cas classique est, pour ’application atmosphérique,
donné par la réaction clé pour la pollution photochimique

(cicjy = (ci) (c;) (L + 1), Iy = (1.14)

La situation classique est que le monoxyde d’azote NO est émis en limite inférieure
de la couche limite (environ 90% des émissions d’oxydes d’azote sous cette forme),
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tandis que 'ozone O3, espece a durée de vie plus longue, transportée et formée sur de
longues distances domine au sommet de la couche limite. On va donc typiquement se
trouver dans la situation ou Iy < 0 et 'hypothese homogene va revenir a surestimer
la production effective par cette réaction chimique (en réalité, NO et O3 ne sont pas
vraiment en contact de maniere homogene ...).

L’approximation n’est en particulier plus vérifiée pour les réactions les plus rapides au
voisinage des sources fixes.

Sur la base de ces hypotheses simplificatrices, 1’équation de dispersion moyennée devient
donc :
d{ci) (c)

5 HdiviV(z, 1) {ci) = div({p) Kturbvm> +xil(e), (T, 1)), 1) + (Si(x, 1)) (1.16)

Dans toute la suite, on omettra de noter (¥) pour alléger les notations et on écrira V.

1.1.4 Conditions aux limites

A cette équation d’Advection-Diffusion-Réaction sont associées des conditions initiales
et des conditions aux limites.

[llustrons des conditions aux limites classiques rencontrées dans le cas atmosphérique.
Une hypothese usuelle revient a considérer que les phénomenes d’advection par le vent sont
prépondérants horizontalement alors que les phénomenes de transport vertical sont dominés
par la diffusion turbulente (brassage convectif de type Rayleigh-Bénard). Les conditions
aux limites latérales sont donc les conditions aux limites classiques pour des problemes
hyperboliques (vent entrant), alors que les conditions au sol et au sommet du domaine
considéré sont les suivantes, z désignant la coordonnée verticale :

1. Ausol (z=0):
(9ci i
_Kturb(xa t)a = El(x, t) — Udepci (117)
Ei(z,t) est le terme d’émission surfacique de 'espece i : il dépend du type de scénario
d’émission choisi (rural, urbain, régional) et comprend une part d’origine anthropique

liée au trafic routier et une part d’origine naturelle.

'Ufjep correspond a la vitesse de dépot sec et est paramétrisée, par espece chimique, en
fonctions des conditions météos en couche limite et du type de sol (LUC : Land Use
Coverage), a chaque type de sol correspondant une rugosité.

Mathématiquement parlant, ceci correspond a une condition de Robin.

2. En sortie de couche limite (z = zy) :

0cs _

_Kturb(x7 t) 02

0 (1.18)

qui correspond a la condition usuelle d’atmospheéere libre. Mathématiquement parlant,
ceci correspond a une condition de Neumann.
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t=0 &0

X

Fic. 1.2 — Advection.

1.2 Classification des processus

L’objectif de cette section est de rappeler brievement la classification mathématique des
processus qui ont été décrits dans ’équation de dispersion. L’intérét d'une telle classification
est par la suite de pouvoir recourir aux schémas numériques adéquats. En pratique (voir
chapitre 2), on utilise des méthodes de séparation d’opérateurs qui reviennent a résoudre de
maniere découplée les processus décrits.

1.2.1 Advection

L’advection par le champ de vitesse V' est donnée par :

% +div(V(x,t)e;) =0 (1.19)

Cette équation releve de la classe des problémes hyperboliques linéaires (figure 1.2).

Un point clé associé a ces systemes est bien stir la vitesse de propagation de I'information
(liée au champ de vitesse V). On se réfere au chapitre 4 pour les problématiques classiques
associées (diffusion numérique, conditions de stabilité, ...).

1.2.2 Diffusion

L’équation de diffusion turbulente est donnée (pour une densité p constante) par :
607;
ot

Cette équation releve de la classe des problémes paraboliques (figure 1.3). Les propriétés de
cette équation (caractere “lissant”) font que son intégration n’est pas en général un enjeu
numérique en Soi.

= div(Kup Vi) (1.20)
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~

t=0 0
X
Fic. 1.3 — Diffusion.
1.2.3 Réaction
Les réactions chimiques sont décrites par :
de;
— = xile, T, 1),1) (1.21)

qui est un systeme d’Equations Différentielles Ordinaires (EDO). On se réfere au chapitre
3 pour les problématiques associées (systemes “raides” -stiff-, schémas explicites/implicites,
stabilité et positivité, réduction de modeles, etc).

Il est & noter que les processus d’advection et de diffusion ne couplent pas les especes
chimiques. Autrement dit, ces processus peuvent étre résolus de maniere parallele sur toutes
les especes. A l'inverse, le terme réactif couple les especes mais peut étre résolu de maniere
parallele sur toutes les mailles.

1.3 Discrétisation spatiale

Schématiquement, le modélisateur va avoir le choix entre les deux grandes classes usuelles
de méthodes de discrétisation numérique :

1. les méthodes de type “éléments finis” qui reviennent a chercher les solutions ¢(x,t)
sous la forme ). ¢;(t)u;(z) avec (u;) une base de fonctions prédéfinies dans un espace
fonctionnel donné (typiquement des fonctions polynomiales a support spatial localisé).
Les inconnues sont alors les composantes ¢;(t) qui peuvent étre obtenues par une for-
mulation faible de I’équation de départ. Modulo une troncature (via une projection
dans un sous-espace de dimension finie), cette approche a le mérite de donner un cadre
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SOURCE

F1G. 1.4 — Nesting autour d’une source de pollution : imbrication de deux maillages (un
grossier et un fin).

“fonctionnel” clair aux solutions obtenues. D’autre part, la prise en compte des singu-
larités de ’écoulement (comme la présence d’une source par exemple autour de laquelle
on souhaiterait avoir un raffinement de la solution) est aisée.

2. les méthodes de type “différences finies/volumes finis”, plus simples & mettre en oeuvre
(les variables discrétisées sont des valeurs de concentrations en des points de maillage
ou des valeurs moyennes sur des mailles) mais dont I'inconvénient est la prise en compte
des singularités. Une approche couramment utilisée est fournie par les méthodes d’im-
brication de maillage (nesting) qui consistent a calculer la solution sur une hiérarchie
de maillage associés a des domaines imbriqués (du plus fin autour de la source au
plus grossier a grande échelle, figure 1.4), I’échange d’information entre les maillages
se faisant selon plusieurs méthodes possibles.

De maniere générale, la plupart des codes actuels du domaine ont recours a la méthode
des différences finies/volumes finis, qui est celle que nous avons donc choisi de présenter.

1.4 Annexe : description du terme réactif

On détaille brievement le terme de production chimique y dans 1’équation de dispersion
(1.21).
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1.4.1 Définitions générales

On se placera pour simplifier dans le cadre d’'un modele en phase gazeuse. Le terme
de production chimique y est alors donné pour une cinétique chimique générale ' (pour n,
especes et n,. réactions) par :

x(e,T,P) = Sw(c,T, P)

ou S est la matrice de steechiométrie de dimension n. X n, et w est le vecteur des n, vitesses
de réaction; T' et P désignent respectivement la température et la pression.

Une réaction élémentaire (c’est a dire qui a lieu effectivement entre especes présentes
simultanément) r est la donnée d’un jeu de coefficients steechiométriques pour les réactants
(s5,)i=1m. €t pour les produits (s} )i=1,.. Elle est définie par le symbole :

ir
Ne Ne
E - .—>§ tx.
SierH Sier
i=1 i=1

ou X; est le symbole de l'espece 7. Notons que, du fait de la réversibilité des processus
collisionnels, une réaction élémentaire est toujours réversible.
Les coefficients steechiométriques globaux pour la réaction r sont donnés par :

+ g

r ir

Sir — S

La vitesse de réaction dans le sens direct (respectivement indirect) w; (respectivement w;)
est donnée par la loi d’action de masse selon :

wi (e, T, P) =k (T.P) ] e
i=1
(respectivement :
wy (e, T, P) =k (T,P) [[ & )
i=1

ou kit (T, P) et k_ (T, P) désignent les constantes cinétiques directe et indirecte de la réaction.
La vitesse de réaction est alors donnée par :

wy =w! —w,

En regle générale, la constante directe est donnée par la loi (empirique) d’Arrhénius :

E
kH(T,P)=AT? exp(—R—,})

avec A la constante préexponentielle, B le facteur exponentiel et E, 1’énergie d’activation ;
R est la constante des gaz parfaits.

La loi de Van’t Hoff donne a partir de considérations d’équilibre thermodynamique la
valeur de la constante inverse selon :

kf (T, P)
) KT, P
Frp) TP

ou KT, P) est la constante d’équilibre de la réaction.

1On néglige pour le moment toute dépendance directe en temps via les phénomenes de photolyse.
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1.4.2 Forme production-consommation

Il est aisé de vérifier, en séparant les réactions dans lesquelles X; joue respectivement le
role de réactant et de produit, que le terme de production pour la concentration ¢; peut se
mettre sous la forme dite communément de “production-consommation” :

Xi(c) = Pi(c) — Li(¢)¢; (1.22)

ou P; et L; sont respectivement les termes (positifs ou nuls) de production et de consomma-
tion. Sous forme vectorielle :

x(c) = P(¢) — L(c)c (1.23)

ou P est le vecteur de production et L la matrice diagonale (positive ou nulle) de consom-
mation. Les conditions thermodynamiques (7', P) sont ici implicitement fixées.

Cette forme est abondamment utilisée pour la définition de schémas numériques spécifiques
a la chimie (chapitre 3).

1.4.3 Quelques remarques complémentaires

Avec le formalisme précédent, on définit usuellement le temps caractéristique de I’'espece

7 comme :
1

Li(e)

qui dépend d’une maniere générale des concentrations c¢. On reviendra sur une définition plus
précise dans le chapitre 3.

On peut se référer a [60] pour I’étude mathématique des équations de la cinétique chi-
mique. Un point essentiel (et pour le moins attendu) est la positivité des concentrations
chimiques. L’examen de (1.22) montre en effet que lorsque la concentration ¢; s’annule, sa
dérivée en temps devient positive :

Ti(c) = (1.24)

Pi(c) >0

Ceci permet de conclure formellement que ¢; ne peut pas devenir négative. En réalité, 1’ar-
gument est un peu plus “fin” et on se réferera a [60] (o 'on utilise I'analycité de c(t)).

1.4.4 Vers le couplage avec d’autres phases de la matiere

En réalité, se limiter a la phase gazeuse est souvent trop restrictif. Par exemple, dans
le cas de la chimie atmosphérique, les mécanismes en phase hétérogene (a la surface de
cristaux de glace dans les nuages stratosphériques polaires) jouent un réle clé pour expliquer
les cycles de catalyse de destruction de I'ozone stratosphérique). Pour ce qui concerne la
chimie troposphérique :

— de nombreux phénomenes ont lieu en phase aqueuse (dans les nuages),

— la phase condensée de la matiere (solide ou liquide) peut interagir avec la phase gazeuse

et a son intérét propre (suivi des aérosols ou particules pour leur impact sur la santé
ou la modification des propriétés radiatives et photolytiques de ’atmosphere).
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J

Diffusion gazeuse

@

Diffusion aqueuse Chimie aqueuse

-

Transfert interfacial

Fi1G. 1.5 — Transfert de masse au niveau d’une goutte de nuage

1.4.4.1 Modele en phase aqueuse

Lorsque se produisent des épisodes nuageux, un transfert de masse a lieu entre la phase
gazeuse des especes et la phase aqueuse (les especes dissoutes au sein des gouttes de nuages).
Pour décrire ces processus, on a alors typiquement a prendre en compte (figure 1.5) :

— la diffusion moléculaire des especes gazeuses vers les gouttes,

— le transfert interfacial a travers la surface de la goutte,

— la diffusion moléculaire des especes dissoutes au sein des gouttes,

— les réactions chimiques en phase aqueuse.

Les trois premiers phénomenes relevent du domaine de la microphysique. Pour mémoire,
une goutte de nuage a une taille caractéristique de l'ordre de quelques dizaines de mi-
crometres. Ces phénomenes sont importants pour le suivi de ’ozone régional, car ils peuvent
constituer des puits d’ozone en phase gazeuse.

1.4.4.2 Aérosols et particules

On appelle aérosol la phase condensée de 'atmosphere, sous forme liquide ou solide. Les
aérosols sont importants :

— pour eux-mémes (impact sanitaire, surtout des nanoparticules) ;

— par la modification des propriétés radiatives de I’atmosphere (exemple : effet direct
pour 'effet de serre) ;

— par linteraction avec la phase gazeuse (au méme titre que les gouttes de nuage) par
les processus de condensation/évaporation ;

— par la modification des propriétés de formation des nuages par condensation de la va-
peur d’eau sur des particules, les noyaux de condensation (CCN : Cloud Condensation
Nuclei) ; on parle alors d’effet indirect pour I'effet de serre.
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| -
PARTICLE SIZE DISTRIBUTION RN

Q@ COAGULATION

CONDENSATION/EVAPORATION

NUCLEATION \ PHORETIC VELOCITIES

F1G. 1.6 — Les principaux processus affectant la dynamique des aérosols.

Il est hors de question ici de décrire la physique des aérosols (figure 1.6). On se contentera

pour fixer les idées de préciser quelques points clés :

— la distribution en fonction de la taille des aérosols (supposés sphériques) est essentielle,
car elle conditionne le dépot des aérosols;;

— I’évolution de cette distribution est donnée par des modeles complexes, pour les-
quels la question du renseignement des données (conditions initiales et parametres)
est déterminante.

Si on appelle n(v, t) la distribution d’un aérosol fixé en fonction du volume v a I'instant
t, son évolution est donnée par I’équation de la dynamique des aérosols (GDE : General
Dynamics Equation) :

J/

% = \% /v: K(v—q,9)n(v —q,t)n(q,t)dg — n(v,t) /v:o K(q,v)n(q,t)dq (1.25)

coagtﬂation
— DU ) b))+ SE) — R
(% N — N————

. J/

~ . .
. , . uits et sources
condensation-évaporation nucléation b

ou K(.,.) est le noyau de coagulation (symétrique) et I(v) est le taux de croissance par
condensation et évaporation, qui est “piloté” par la thermodynamique. La coagulation décrit
les phénomenes d’agrégation entre aérosols alors que les processus de condensation-évaporation
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décrivent le gain ou la perte d'un monomére (I’aérosol de taille la plus petite) sous 'influence
des conditions thermodynamiques. La nucléation précise les flux de création du plus petit
aérosol pris en compte dans cette description continue (il est de volume wvy).

L’obtention de ce modele continu a partir de la description initialement discrete de la
population d’aérosols permet de définir exactement le noyau de nucléation.

Remarquons que ce modele combine donc a la fois des termes intégro-différentiels (la
coagulation) et hyperboliques (condensation-évaporation). C’est ’ensemble de ces termes
qui jouent alors le role de terme réactif y, ce qui rend d’autant plus difficile la résolution
numérique ...



Chapitre 2

Méthodes de séparation d’opérateurs

Comme on I’a vu, I’équation de dispersion réactive met en jeu plusieurs processus (advec-
tion, diffusion, termes de pertes, termes de gain, termes réactifs, etc). De maniere usuelle, I’en-
semble de ces processus n’est pas résolu de maniere couplée et des méthodes de “découplage”
sont en pratique mises en oeuvre : on parle alors de méthode de séparation d’opérateurs (ope-
rator splitting method) ou de méthode des pas fractionnaires (fractional step method).

L’objet de ce chapitre est de présenter ces méthodes et ’analyse de leur comportement,
notamment en terme d’évaluation des erreurs induites par le découplage.

On peut se référer par exemple a [27, 62] pour une présentation classique de ces méthodes.

2.1 Motivations

2.1.1 Notations

Dans le cas d’une densité constante (pour simplifier), I’équation de dispersion (a laquelle
il faut bien entendu ajouter les conditions aux limites) :

0 C;
ot

peut étre vue de maniere générale comme une équation d’évolution :

+ div(V(z,t)c;) = div(K (x,t)Ve) + xi(e, T(x,t),t) + S;(z,t) (2.1)

% = ifi(C) (2.2)

mettant en jeu plusieurs processus f;(c), en nombre n,. Dans le cas du modele d’advection-
diffusion-réaction, on a bien entendu :

fie) = =div(V(x,t)e) , falc) = div(K(z,t)Ve) , fs3(c) = x(c,T(x,t),t) (2.3)

Les processus f;(c) sont donc a voir comme des opérateurs agissant sur les fonctions ¢(., t) de
Iespace dans le cas du modele continu. Apres discrétisation spatiale éventuelle, ils seraient
directement représentés par des fonctions agissant sur les vecteurs des valeurs ponctuelles de
c(.,t) (dans le cas des différences finies par exemple).

23
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2.1.2 Méthode de séparation d’opérateurs versus résolution couplée

Sur le plan de la physique, I’ensemble des processus est bien entendu couplé et, en toute
rigueur, les algorithmes numériques de résolution devraient résoudre de maniere couplée les
processus pris en compte.

Pour au moins deux raisons, une approche alternative de séparation des opérateurs est
couramment mise en oeuvre :

1. en terme de modularité des codes informatiques résultants, on peut vouloir préférer uti-
liser une approche ne mettant en oeuvre que la résolution de processus pris indépendamment
les uns des autres, ie :

dc
yTi file) , ¢(0) = cg (2.4)

Si on appelle ¢ (At, ¢y) la solution du systéme précédent au temps t = At (& voir
également comme la sortie de I'appel d'une routine de résolution de ce systeme, ¢
étant la donnée d’entrée), les codes informatiques ne mettent alors en oeuvre que la
résolution séquentielle de systeme du type (2.4). Un algorithme typique de résolution
est alors pour une intégration sur un intervalle de temps [0, 7 = NA¢] :

DO n=1,N

c=c,

DO i=1,n,

c=cV(At, c)

ENDDO

Ch41 = C

ENDDO

Un avantage clair est la grande modularité : I’ajout d’un nouveau processus n’affecte
pas l'ensemble du programme et revient a ajouter une nouvelle “brique” résolvant un
systeme de type (2.4) ; un processus peut étre récupéré ou substitué aupres d’une autre
équipe via l'incorporation de la brique concernée, etc.

2. en terme numérique, la résolution couplée peut également générer de nombreuses dif-
ficultés.

Les processus concernés peuvent avoir des comportements qualitatifs diamétralement
opposés et les contraintes algorithmiques qui en résultent peuvent étre difficiles a conci-
lier : dans le cas découplé, on peut faire le choix de 'algorithme “optimal” pour chaque
processus sans se soucier des autres processus.

De plus, dans le cas des modeles de dispersion réactive, le terme réactif se caractérise
fréquemment par une grande complexité et une grande dimension (de nombreuses
especes concernées : dans le cas de la chimie atmosphérique, des centaines d’especes
chimiques traces sont ainsi modélisées). Une implication est alors souvent la grande dis-
persion des échelles de temps concernées (les temps caractéristiques couvrant plusieurs
ordres de grandeurs). En anticipant sur la suite (chapitre 3 consacré a I'intégration en
temps), ceci conduit a préférer des méthodes implicites d’intégration en temps. Dans le
cas d’une méthode des lignes (Method of Lines, MOL : on discrétise d’abord en espace
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puis en temps), une résolution couplée conduit alors a résoudre un systéme implicite

de la forme :
i=np

HR = 2 lewn) £ Flew) (25)

ou ’on notera que les processus ont été évalués au temps t,,1 (¢, est une approximation
numérique de c(t,,), t,41 = t,+At). L’équation algébrique en ¢, 1 doit alors étre résolue
et 'on verra que ceci passe par l'inversion de la matrice jacobienne de F'. La taille de ¢
est ici donnée par le produit du nombre de mailles (disons n,,) par le nombre d’especes
chimiques (disons n.) : la complexité est alors de I'ordre de O([n. X n,,?).

Dans le cas découplé, ’approche implicite ne sera utilisée que pour le processus présentant
une grande dispersion d’échelles en temps (en I'occurence le terme réactif). On n’a alors
plus & inverser une matrice que pour la résolution de ce processus (pour une variable de
dimension n. ), dans les n,, mailles concernées. En supposant que cette étape est dimen-
sionnante sur le plan calcul, la complexité est alors de n,, x O(n?) qui est évidemment
moindre que celle de 'approche couplée.

2.2 Analyse classique des méthodes de séparation d’opérateur
dans le cas linéaire

La contrepartie des méthodes de séparation d’opérateurs est bien entendu ’erreur induite
par le découplage des opérateurs. L’analyse se fait usuellement sur le cas linéaire que 1’on
présente dans un premier temps.

Dans toute la suite, on suppose obtenue la solution numérique ¢, a l'itération n du
splitting (ie apreés un temps nAt, At étant ce que I'on appelle classiquement le pas de temps de
splitting). On cherche alors a obtenir une approximation de ¢, apres intégration découplée
des processus sur un intervalle de temps de longueur At. Les processus sont supposés étre
intégrés de maniere exacte, éventuellement a I’aide de pas de temps inférieurs a At (on parle
alors de sous-cyclage).

2.2.1 Méthode du premier ordre

On va considérer le probleme d’évolution donné par deux processus linéaires représentés
par A et B (des matrices dans le cas de la dimension finie apres discrétisation) :

d
d—j = Ac+ Be, ¢(0) =¢, (2.6)

Soit At l'intervalle de temps de splitting. La méthode de séparation la plus naturelle est
définie par les deux étapes successives :

1. Etape 1 de résolution du processus A :

= Ac* sur [0,At], (0)=c, (2.7)
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2. Etape 2 de résolution du processus B :

dc**
dt

= Bc™ sur [0,At], ¢™(0) =" (Af) (2.8)

La valeur de c¢(At) est alors approchée par ¢**(At). On appellera pour des raisons évidentes
(A — B) cet algorithme.

L’analyse classique de l'erreur induite par la séparation des opérateurs est effectuée a
partir des solutions exponentielles en effectuant un développement asymptotique par rapport
a l'intervalle de séparation At. Ici, la solution exacte est bien entendu :

Cni1 = exp((A + B)At)c, (2.9)
alors que la solution calculée a 'aide de la méthode (A — B) est
ca—p(At) = exp(BAt) exp(AAt)c, (2.10)

L’erreur locale est alors :
AB — BA

5 Atc, + O(AP) (2.11)

le =ca_p(At) — chy1 =
apres développement des exponentielles. On a donc une méthode localement d’ordre 2 (glo-
balement d’ordre 1) dans le cas général. Pour des opérateurs A et B qui commutent, il est
clair que l'erreur de splitting est nulle.

2.2.2 Meéthodes du second ordre

Il est bien str aisé de monter en ordre en notant que, pour le cas linéaire, le terme
dominant de l’erreur est de signe opposé pour la méthode (B — A) (obtenue par inversion de
la séquence de résolution). Si I'on définit :

o = CA,B(At) —;— CB,A(At) (2'12)

on a une solution d’ordre supérieur. Un inconvénient est le cout calcul, cet algorithme
nécessitant la résolution de 4 processus élémentaires.

Strang ([48]) a proposé de symétriser la méthode précédente avec les trois étapes sui-
vantes :

1. Etape 1 de résolution de B sur [0, At/2] :

dc* At
C; = Bc* sur [0,—], c¢"(0)=g¢, (2.13)

2. Etape 2 de résolution de A sur [0, At] :

= Ac™ sur [0,At], ¢™(0)=c"(—=) (2.14)
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3. Etape 3 de résolution de B sur [At/2, At] :

ilt = Bc™ sur [0, 7] , (0) = ™ (AY) (2.15)

’ , At
la valeur ¢, étant approchée par C***(T)

On nommera sans surprise (B — A — B) cette méthode de séparation, dont un calcul
immédiat permet de s’assurer qu’elle est bien d’ordre 3 localement (2 globalement) : la
solution est de la forme

cp-a-p(At) = exp(BAt/2) exp(AAt) exp(BAt/2)c, (2.16)
et un développement limité donne :
cp_a_p(At) ~ (I+BAt)2+B*At?/8) (I + AAt+ A*At? /2) (I + BAt /24 B*At* /8)c,, (2.17)

qui tout calcul fait donne le développement limité a ’ordre 2 de la solution exacte.

Notons que le prix a payer n’est pas un intervalle d’intégration plus long (chaque opérateur
est de toute maniére intégré sur un intervalle de longueur At) mais deux interruptions
d’intégration (et non plus une) *.

2.2.3 Méthodes de type “Source Splitting”

Un inconvénient important des approches précédentes est le recours a une résolution
séquentielle des processus : en pratique, les conditions initiales pour chaque processus sont
modifiées a chaque sous-pas. Pour les processus présentant une grande disparité des échelles
de temps, ceci conduit a éloigner les solutions intermédiaires des variétés d’équilibre as-
sociées aux temps caractéristiques lents (voir chapitre 3) et a intégrer de nombreuses phases
transitoires générées de maniere artificielle par I’approche séquentielle.

Une approche alternative est alors logiquement de ne pas modifier les conditions initiales
mais de tenir compte des contributions des processus par des termes sources supplémentaires
(on parle de source splitting) ou incréments (on parle aussi de formulation incrémentale)
dans I’équation du second processus (celui qui présente la disparité d’échelles de temps et
'existence de phases transitoires potentielles).

L’algorithme devient alors le suivant :

1. Etape 1 de résolution du processus A (inchangée) :

T Ac® sur [0,At], ¢(0)=c, (2.18)

2. Etape 2 de résolution du processus B avec prise en compte d’un terme source (incrément)
lié a I'étape 1 :
dc** c*(At) — ¢,
= B4+ ——F—— sur [0,At], ¢™(0)=¢, 2.19
= -l 0.2, ¢(0) (219

LA mettre en regard des remarques que I’on fera au chapitre 3 sur le coiit des phases de redémarrage.
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La valeur de ¢, est alors approchée par ¢**(At).

Le point crucial est bien entendu que la condition initiale du second pas n’est pas modifiée.
Autrement dit, si ¢, avait atteint un état d’équilibre, on ne 1'a pas perturbé (générant par
14 méme une couche transitoire de relaxation vers cet équilibre).

Un développement limité montre que cette méthode est d’ordre 2 localement (1 globale-
ment).

Pour étre complet sur le plan de la terminologie, notamment pour les applications en
océanographie et météorologie, on parle aussi de méthode d’intégration “par tendances” (la
contribution du premier processus étant représentée par la “tendance” donnée par I'incrément).

2.2.4 Méthodes d’ordre supérieur

L’étude des erreurs d’ordre supérieur se fait a l'aide de la formule de Baker-Campbell-
Hausdorff (BCH : voir [18, 24, 36]) pour deux opérateurs linéaires X et Y :

1
X' =e Z=X+Y +[XY]+h(XY [XY]) (2.:20)

avec [X,Y]=XY —YX et h(X,Y,0)=0.

Des méthodes d’ordre plus élevé peuvent également étre obtenues a 1’aide d’une simple
extrapolation de Richardson ([55]). On rappelle que si I’on dispose d'un algorithme numérique
définissant une solution ca; pour un pas At, dont Ierreur locale est dominée par un terme
du type kAt?, alors (4cag/z — car)/3 définit une solution d’ordre local 3. Le résultat est direct
via :

CAt/2 = Cexact + kAt2/4 s CAt = Cegact T kAt (221)

avec Cegqer la solution exacte.

Un inconvénient important de cette méthode simple a mettre en oeuvre est, d’une part
son cout calcul, d’autre part la perte possible de positivité de la solution. En effet, méme si
les algorithmes mis en oeuvre pour la résolution permettent de garantir la positivité de cay
pour tout pas de temps, ce n’est plus le cas pour la solution extrapolée.

2.2.5 Traitement des conditions aux limites

Dans les cas précédents, nous n’avons considéré que des opérateurs linéaires (ou ce qui
revient au méme des discrétisations spatiales de termes de transport sans conditions auzx
limites). La prise en compte de conditions aux limites induit le passage d'un cas linéaire a
un cas affine.

Pour illustrer ce point, considérons par exemple le terme d’advection avec un schéma
de type upwind (on se réfere au chapitre correspondant) : ¢(x;) est une approximation
par différences finies de la valeur au point de maillage z; (dans un cas 1D en espace) et
apres discrétisation du terme d’advection, on obtient comme équation différentielle le terme
discrétisé générique :

de(x;)  Ve(xioi) — V()

a Az (222)
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qui est bien sur linéaire. Si I'on a une condition de bord de flux entrant, par exemple en
x = x; selon Ve(x;) = L (avec L un terme de flux donné), alors le terme discrétisé devient
affine.

La donne est la méme pour le terme de diffusion, la condition aux limites de dépot /émission
générant un terme affine.

L’analyse précédente (limitée au cas linéaire) n’est alors plus valable et le traitement des
conditions aux limites reste un probleme largement ouvert pour les méthodes de séparation
d’opérateurs (voir par exemple [42] ou [18] pour une quantification sur un exemple de
réaction-advection).

Il est aisé de l'illustrer sur le cas affine :
de _ Ac+ Bc+ L (2.23)
dt
ou A et B sont des opérateurs linéaires qui commutent et L est un vecteur représentant
les conditions aux limites. La question typique est de savoir comment “répartir” L entre les
deux opérateurs, sachant qu’il n’y a pas d’erreur de splitting associée a la seule séparation
des opérateurs. Pour le moment, on propose le schéma suivant :

dc*
dt

= Ac"+alL sur [0,At], ¢*(0)=c¢, (2.24)

suivi de

dc**
dt

avec a et (3 deux coefficients a déterminer (plus exactement des matrices dans le cas vectoriel).
On suppose que A, B et A+ B sont inversibles et on a directement pour la solution exacte :

= Bc™ + [BL sur [0,At], ¢™(0)=c"(At) (2.25)

1 = PR (e L (A+ B)Y'L) — (A+ B)"'L (2.26)
et pour les solutions issues des deux étapes de splitting :
c*(At) = e (e, + aATL) — aAT'L (2.27)

et
*(At) = P2 (e (At) + BB7L) — BBT'L (2.28)

soit encore :
*(At) = ATBA (e 4 0 ATIL) 4 P2 BB — aATL) — BB7L (2.29)
L’erreur de splitting est donc nulle si :
Al =(A+B)', BB '=(A+B)', BB —aA ' =0 (2.30)
ce qui conduit au choix des parametres « et (3 selon :

a=(A+B)'A, 3=(A+DB)"'B (2.31)
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Notons que la répartition optimale des conditions aux limites n’est donc pas, a priori, donnée
par l'origine physique des conditions.

Imaginons par exemple que L ne contienne que des conditions aux limites associées a
I'opérateur A : on peut étre tenté de prendre o = 1 et § = 0. Néanmoins, un développement
limité de l'erreur de splitting pour At petit permet de s’assurer que :

le=(1—(a+3))At+ O(AL?) (2.32)

et le schéma n’est donc que du second ordre dans ce cas-la.

Une telle approche se généralise aisément au cas non linéaire (voir par exemple [18]). Ce-
pendant, si de telles analyses permettent de trouver formellement un traitement des condi-
tions aux limites, ’application en pratique d’une telle approche reste difficile.

2.2.6 Splitting au niveau de P’algebre linéaire

Afin de s’affranchir des problemes liés au traitement des conditions aux limites, une
méthode alternative est d’effectuer le splitting “au niveau de l'algebre linéaire” (certains
auteurs parlent d’ “internal splitting” : [54]). Dans le cadre d’une résolution couplée des
opérateurs pour I’équation

— =Ac+ Be, ¢(0)=c, (2.33)
I'utilisation d’un schéma implicite en temps conduit a la résolution d’équations algébriques
(non linéaires dans le cas général). Par exemple avec une méthode d’Euler implicite :

Cnt+1 — Cp

At = Acn+1 + Bcn+1 (234)
soit (I — (A + B)At)cpy1 = ¢,. L'idée est alors de faire par exemple 1'approximation :
I — (A+ B)At ~ (I — AAt)(I — BAt) + O(At?) (2.35)
ce qui conduit a la résolution successive de :
(I — AAt) " = ¢, (2.36)
puis de
(I — BAt)c™ =c¢* (2.37)

Le choix des notations n’est pas innocent et on reconnait la résolution par la méthode d’Euler
implicite du splitting d’opérateurs (A — B) :
dc*
dt

= Ac" sur [0,At], (0)=c¢c, (2.38)

suivi de

dc**
dt
On peut se référer par exemple a [1, 54]. Notons qu’une méthode du méme type est proposée
pour la résolution des équations de Navier Stokes dans [30] (ou les méthodes de splitting
sont interprétées comme des choix de décomposition LU de matrices).
Notons pour conclure, que sur le plan de la terminologie, on parle aussi de méthode AMF
(pour Approximate Matrix Factorization).

= Bc™ sur [0,At], ¢™(0) = c"(At) (2.39)
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2.2.7 Extension au cas non linéaire

La généralisation au cas non linéaire de la notion de commutateur se fait avec 1'utilisation
de la dérivée de Lie associée aux fonctions f et g (de la variable c) :

0 0
[f.9] = a—‘z - a—‘ég (2.40)

Notons qu’a 'aide de la formule BCH, il suffit de montrer que deux opérateurs commutent
pour étre assuré que l'erreur de splitting est nulle.

2.3 Application au cas de I’équation d’advection-diffusion-
réaction

2.3.1 Résultat

Les techniques précédentes ont été appliquées de maniere systématique dans [24] aux
équations d’Advection-Diffusion-Réaction (sans conditions aux limites) :

0 C;
ot

+div(V(z,t)e;) = div(K (z,t)Ve) + xi(e, T(x, t),t) (2.41)
L’ensemble des propriétés obtenues est résumé dans le théoreme suivant.

Théoreme 2.3.1
1. L’advection et la chimie commutent si la chimie ne dépend pas de la position spatiale
et si le champ de vitesse est a divergence nulle.

2. L’advection et la diffusion commutent si le champ de vitesse et la diffusion ne dépendent
pas de la position spatiale.

3. La diffusion et la chimie commutent si la chimie est linéaire et ne dépend pas de la
position spatiale.

Donnons d’abord quelques commentaires. Il est clair que 'hypothese de non dépendance
en l'espace n’est pas en toute rigueur vérifiée pour la diffusion turbulente et le terme de
chimie (via la température), mais on peut estimer qu’elle est valide localement. A l'inverse,
une hypothese “indéfendable” est celle relative a la linéarité de la chimie.

Ces résultats donnent donc une premiere indication : la principale erreur de splitting est
vraisemblablement celle lie au découplage entre diffusion (verticale) et chimie.

Pour le cadre de la pollution atmosphérique, ceci conforte les observations de [13] et
explique les efforts consacrés a une résolution couplée de la diffusion et de la chimie.

Une approche élégante de démonstration est fournie par le recours au formalisme de Lie
mais la plupart des résultats peuvent étre obtenus de maniere certes un peu calculatoire
mais peut-étre plus parlante pour le lecteur non averti. C’est le choix qui a été retenu dans
la suite pour la démonstration ([45]).
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2.3.2 Advection-réaction

Il suffit d’écrire de maniere classique la méthode des caractéristiques pour la commutation
entre chimie et advection (comme noté dans [26] puis [19, 43]).

On suppose le champ de vitesse constant V(z,t) = u et soit X (x,t) la caractéristique
associée a x : X(z,t) = x + ut. Soit la fonction de ¢ & z fixé :

9z (t) = (X (z,t),1) (2.42)

On a aisément : q 9 9 &
9.  Oc c 0X _ _
+ e X(9z,t) , g2(0) = c(z,0) (2.43)

at ot
On notera désormais G(go, t) la solution de I'EDO :
dG
= = X(G), G(0)=go (2.44)

La solution du probleme d’advection-réaction est donc donnée par :
co(@,1) = go—ut(t) = G(c(z — ut,0),1) (2.45)

Montrons que cette solution est obtenue par splitting. Le splitting advection puis réaction
revient a intégrer pour la seconde étape :

de,

E - X(Cmat) ) <246>

avec pour condition initiale ¢,(0) = ¢(x — uAt,0) la sortie en t = At de I'étape d’advection.
On a donc par définition, avec des notations évidentes :

ca—y(z,t) = G(c(zr — uAt,0),1t) (2.47)

et on retrouve la solution exacte au temps t = At 2.
Le splitting associé réaction-advection est donné directement par :

cy—a(z,t) = G(c(x — ut,0), At) (2.48)

ou G(c(x,0), At) est la condition initiale pour I'étape de convection. On retrouve bien en-
tendu en t = At la solution exacte.

2.3.3 Diffusion-Réaction

L’étude de la commutation des opérateurs de diffusion et de chimie linéaire peut étre
effectuée de la méme maniere a l’aide de la solution de I’équation de la chaleur.

On étudie le cas d'une diffusion indépendante de 1’espace et scalaire. Pour simplifier, on
prend la diffusion et la dimension de 'espace égales a 1. On rappelle enfin que la solution de

2... ce qui montre I'importance des temps de sortie des algorithmes de splitting : on ne retrouve la solution

exacte qu’au temps t = At, les solutions intermédiaires n’ayant pas de “sens physique”.
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I'équation de la chaleur dans tout I'espace peut étre calculée a 'aide du noyau G(z,t) selon

([25]) -

22

1
c(x,t) = Glx—y,t)ce(y,0)dy , G(z,t) = ——exp(—— 2.49
@)= [ Gla-p0cn0dy. GEab=Zen-3) (249
On note x(c¢,t) = Mc, ou M est une matrice, le terme de chimie étant supposé linéaire.
Notons enfin :
&(x,t) = e Me(a,t) (2.50)

ou c est la solution de I’équation de Réaction-Diffusion initiale.
On a aisément :

oe 0
a_j - e—Mfa—i — MeMte(z, ) (2.51)
soit : - o o
I i 0%c C
= - 2.52
o ¢ a2 or (252)
dont la solution est directement donnée par :
(w.t)= [ Glo—pit)cly.0)dy (2.53)
Finalement la solution exacte est :
(o.t) =M [ Gl y.0)cly.0)dy (2.54)
dont I'évaluation en ¢ = At donne :
c(z, At) = eMAt/ G(x —y, At) c(y,0) dy (2.55)

Cette solution s’interprete directement comme la solution issue du splitting Diffusion puis
Réaction. Il reste a étudier le splitting Réaction puis Diffusion. La solution de la seconde
étape est :

™ (z,t) = / G(x —y,t)c™(y,0) dy (2.56)

avec pour condition initiale ¢**(y, 0) = eM2lc(y,0), et on conclut aisément.

2.3.4 Advection-Diffusion

Etudions a présent la commutation entre advection et diffusion. On se place dans le méme
cadre d’hypotheses simplificatrices pour la diffusion que précédemment. En définissant la
solution le long des caractéristiques selon :

g(x,t) = c(x + ut, t) (2.57)

on vérifie aisément que g vérifie I’équation de la chaleur, soit :

c(z,t) = / G(x — ut —y, At) c(y,0) dy (2.58)
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dont I’évaluation en t = At donne :
clx, At) = / G(z — ulAt — y, At) c(y,0) dy (2.59)

Ceci s’interprete directement comme la solution issue du splitting diffusion puis advection.
Si on effectue le changement de variables Y = y + uAt, on obtient :

c(z, At) = / G(x =Y, At) c(Y — uAt,0)dY (2.60)

et on retrouve la solution issue du splitting advection puis diffusion.

2.4 Exercices

2.4.1 Traitement des conditions aux limites

dc  Oc
On considere le probleme d’advection-réaction a5 + Fr ¢?, x variant dans ]0, 1[, avec
x
la condition de Dirichlet en x =0 :
sin?(mrt)

c(0,t) = ———=—=
(0.2) 1 — tsin®(7t)
et avec la condition initiale :
c(x,0) = sin®(7x)
La solution exacte est :
sin?(m(z —t))
1 —tsin®(n(z —t))

On s’intéresse a l'intégration du premier pas de temps, i.e. sur [0, At]. Intégrer la chimie
puis l'advection. Comparer a la solution exacte.

Calculer la solution issue de la séparation chimie puis advection. Comparer a la solution
exacte.

c(x,t) =

2.4.2 “Source splitting”

Montrer que [’erreur locale de la méthode “source splitting” est d’ordre 2.



Chapitre 3

Simulation numérique des Equations
Différentielles Ordinaires pour le
traitement des termes réactifs

L’objet de ce chapitre est de présenter les bases de la simulation numérique des systemes
d’Equations Différentielles Ordinaires (EDO) qui sont associées aux termes réactifs dans le
modele de dispersion réactive.

Les méthodes de splitting d’opérateurs sont classiquement utilisées pour découpler la
résolution des différents processus. Dans ce cadre, la résolution en temps, maille par maille,
des termes réactifs est souvent extremement délicate et de loin la partie limitante dans les
algorithmes numériques du fait de la grande disparité des échelles de temps.

Une premiere section est consacrée aux notions numériques classiques de ce domaine. En
pratique, les problemes rencontrés se caractérisent par la grande dispersion des échelles de
temps : on parle classiquement de problemes “raides” (stiff), qu’aborde la deuxieéme section.
Dans la troisieme partie, on présente quelques algorithmes classiques. Enfin, on termine par
une section dédiée aux méthodes de réduction, qui consistent a modifier le systeme physique
en “filtrant” les composantes rapides (c’est a dire celles qui génerent la raideur numérique).

3.1 Quelques notions classiques

3.1.1 Systeme considéré

Dans toute la suite, on cherche a résoudre un systeme d’EDOs sous la forme :
dc
pri fle,t), ¢(0)=c¢y, ceRF (3.1)
qui peut éventuellement provenir d’une discrétisation spatiale.

Pour des analyses de stabilité, on étudiera le systeme :

dé
d—::)\éc, ceR (3.2)

35
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avec dc une perturbation dans une direction (que I'on notera par abus ¢) et A une valeur
propre de la matrice jacobienne J = df/dc.

Enfin, on suppose donnée une discrétisation du temps (¢,,), avec un pas de temps constant
pour simplifier At : ¢,, >~ ¢(t,,) est alors 'approximation numérique que I’on cherche a calculer
de maniere itérative. Les algorithmes vont donc consister a estimer c¢,,; en fonction des
estimations aux temps précédents.

3.1.2 Erreur locale, erreur globale et stabilité

Afin d’illustrer les notions d’erreurs et de stabilité, on va considérer 'exemple de la 6-
méthode donnée par I'algorithme suivant :

P = (1= 0)f(Cns )+ 0F (Cusn, tus) (33)

ou # est un indicateur du degré d’implicitation : si # = 0 (resp. 1), on retrouve la méthode
d’Euler explicite (resp. implicite).
Ecrivons a présent I'algorithme sous la forme :

Cny1 = Cp + At(l - e)f(cm tn) + At@f(an, tn-i-l) (3‘4)
Si on “insere” dans cette formule la solution exacte, on obtient :
C(tn+1> = C(tn) + At(l - G)f(c(tn), tn) + At@f(c(tn—i-l)a tn—i—l) + Pn (35>

avec un résidu p,, la solution exacte n’ayant aucune raison de vérifier I’algorithme discret.
Apres développement de Taylor, on obtient :

_ Lo —omae®l o (3.6)
=3 at? ‘
d? 0 0
avec EE = 8_f + a—“: pn définit ce que 'on appelle classiquement [’erreur de troncature.
c

Un point clé est bien entendu la propagation de cette erreur lors des pas de temps
ultérieurs. Si on note €, = ¢(t,,) — ¢, Uerreur globale (résultant des erreurs locales antérieures
et de leur propagation), on a pour le cas linéaire (linéarisé) :

Ent1 = En + (1 — O)AAte, + ONAte, 11 + pn (3.7)
En notant : L+ (1-0)
+(1—-0)z
R(z) = —— /7 3.8
() = (33)

I’étude de l'erreur devient :
ent1 = R(AAt)e, + 0, (3.9)

avec 0, = (1 — ONAt) " p, Uerreur locale qui correspond a l'erreur effectuée sur un pas de
temps, en supposant la solution bonne a t,,. Il y a donc de maniere logique deux contributions
a l'erreur :
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1. une erreur purement locale;
2. une erreur correspondant a la propagation des erreurs précédentes.

Avec une terminologie évidente, on appelle classiquement fonction de stabilité la fonction
R(z) de la variable complexe z € C (les valeurs propres de J étant en toute généralité
complexes) définie pour le probleme linéarisé f(c,t) = Ac par :

Cni1 = R(AAt)c, (3.10)
On a alors directement :
i=n—1
en = (ROAL) s+ > (RAAL)) 6,1 (3.11)
i=0

Si [|R(AA)|| < K (fonction de stabilité bornée), alors on a :

1=n—1

lenl < Kleol + K ) 6] (3.12)

=0

Pour une erreur locale ; = O(At*™!) (p = 1 ou p = 2 ici), on a donc avec T = nAt, une
erreur controlée, hors la partie relative aux conditions initiales, en O(At?), ce qui illustre la
perte d’ordre lors du passage de I'erreur locale a ’erreur globale.

3.1.3 Domaines de stabilité

Pour le probleme linéarisé, lorsque A < 0, la perturbation décroit en valeur absolue.
On peut attendre la méme propriété (ce qui va au dela d’attendre que la perturbation soit
bornée) pour le cas discrétisé. On définit donc assez logiquement les méthodes A — stables
pour lesquelles C~ est contenue dans le domaine de stabilité :

S={2€C:|R(2)| <1} (3.13)

On peut montrer que la -méthode est A-stable pour § > 1/2. Sinon, il est suffisant de
vérifier que NAt € S pour garantir la stabilité de 1'algorithme, ce qui donne une contrainte
sur le pas de temps, en pratique pour le cas de la méthode d’Euler explicite :

At < — (3.14)

Comme le concept de A-stabilité peut s’avérer trop restrictif, un concept moins fort et
habituellement demandé aux schémas numériques est la A(«)-stabilité, définie par {z :
larg(—z2)| < a} CS.

Enfin, pour terminer avec ces concepts, il est fréquemment demandé (notamment pour
les systemes raides, voir ci-apres) la L-stabilité qui est associée a R(oc) = 0. En pratique,
ceci correspond au cas asymptotique AAt > 1, dans lequel on souhaite travailler avec nos
schémas numériques (pas de temps non contraints par les échelles physiques les plus petites).
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valeur propre | espece 71
-80019.18 o3P -80019.17
-78.34 RXPAR -78.34
-54.68 OH -51.41
-19.74 PHO -19.74
-18.95 503 -18.08
-17.98 NOs -17.98
-6.69 HO, -6.69
-5.44 X0y -9.18
-0.56 XOoN -0.56
-0.47 HNO, -0.85
-4.74E-2 NyOs -5.25E-2
3.10E-2 NO | -1.04E-2 (-3.16E-2)
NO; | -5.90E-3 (-3.14E-2)
Oy | -L.51E-2 (-1.9E-2)

TaAB. 3.1 — Raideur du schéma CBMIV.

Il est enfin a noter que hors “cas pathologique” (comme les systemes autocatalytiques),
la cinétique chimique est stable et les valeurs propres de la matrice jacobienne sont de partie
réelle négative.

Un point clé est bien entendu le respect de la positivité des concentrations. En effet, pour
le cas linéaire :

de
dt
une concentration négative peut conduire a une “explosion” non controlée de la simulation
numérique. Le critere de positivité va donc étre un élément essentiel des schémas numériques.

Ae, A<0 (3.15)

3.2 Systemes raides

3.2.1 Quelques caractérisations de la raideur
3.2.1.1 Distribution des valeurs propres et des temps caractéristiques

Une caractéristique essentielle des systemes réactifs a traiter en pratique est la grande
disparité des échelles de temps. Par exemple, pour le cas de ’atmosphere, les échelles varient
de quelques millisecondes pour des radicaux comme OH ou O a des années pour le méthane.

Le tableau 3.1 montre, pour un schéma cinétique couramment utilisé en pollution at-
mosphérique (CBM 1V [11]), la distribution des 12 plus grandes valeurs propres (en valeur
absolue) du Jacobien associé a la production chimique (en un point donné de I'espace des
phases). Toutes les autres valeurs propres, au nombre de 16, sont supérieures ou égales

a —8.4.107%, et se distribuent de maniere continue jusqu’a la plus grande valeur propre
(—5.9.1077).
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La colonne en regard indique les temps caractéristiques (remarque 1.4.3) de certaines
especes. Les especes NOy et Oz ont été rajoutées. Pour ces deux dernieres especes et NO,
un temps caractéristique a été également calculé dans la base de variables lumpées O, =
O3+ NO;y et NO, = NO + NO, (qui remplacent respectivement O3 et NOs).

Au sens généralement admis du terme, les équations de la cinétique chimique sont donc
ratdes puisque :

— les valeurs propres du jacobien sont de partie réelle strictement négative ;

— 81 Apnin €t Aae sSont les valeurs propres respectivement de plus petite et de plus grande

valeurs absolues !, alors :

]Am‘”\ > 1 (3.16)
)\min
La notion de raideur est en réalité particulierement difficile & définir 2, et on va d’abord revenir
sur quelques caractéristiques des problemes raides a 1’aide de trois éclairages sensiblement
différents :
— la perte de stabilité des schémas explicites,
— la comparaison des contraintes de précision et de stabilité,
— et enfin la résolution des systemes algébriques induits par l'utilisation de schémas
implicites.
On reviendra sur les différences entre schémas explicites et implicites en adoptant le point
de vue des systemes dynamiques dans la section consacrée a la réduction.

3.2.1.2 Stabilité versus précision

Une maniere pragmatique de distinguer un probleme raide d’un probléeme non raide se
fonde sur la comparaison des performances d’un schéma explicite et d’un schéma implicite de
méme ordre ([4, 14, 39]). Ceci revient a dire qu’un probleéme est raide lorsque le pas de temps
d’un schéma explicite est donné par la contrainte de stabilité plutot que par la contrainte
de précision. Avec une telle définition, la position dans I'intervalle de calcul joue un role
prépondérant, comme ’exemple suivant va l'illustrer.

Examinons 'EDO (scalaire)  :

de dceq

dt dt
Ol C¢4(t) est une fonction réguliere connue (décrivant en réalité les modes “lents” du systeme)
et A > 0 un parametre donné (essentiellement grand). La solution est bien entendu

c(t) = ceq(t) + (c(0) — ceq(O))e_’\t (3.18)

=€ — ceq(t)) + (3.17)

Il n’y a qu'une valeur propre et la notion de raideur doit étre précisée.

1Ceci correspond en réalité au cas bien partitionné (“stiffly separable” dans [61]), que 1'on étudiera en
pratique.

ZVoir la préface de [14] ou la discussion pages 360-363 dans [2].

3C’est une légere modification de 1’exemple historique de Curtis et Hirschfelder ([8]) et bien entendu une
variation sur Pexemple précédent (mais le point de vue est différent car c.q(t) est & voir comme un équivalent
de solution “réduite” - voir plus loin).
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Pour un schéma du premier ordre (comme les schémas d’Euler, implicite ou explicite),
I’erreur de précision est classiquement controlée par un estimateur de la dérivée seconde de

la solution :

d?c

dt?
avec &4, une tolérance d’erreur a spécifier par le modélisateur. Le point clé est que cette
contraine est la méme pour les deux schémas.

Montrons a présent que la contrainte de précision associée a cette erreur locale varie
fortement en temps pour (3.17).

1
|| =~ 5’(1 — 20)At’—| < 4 (3.19)

On a évidemment pour t = O(X) (en temps court) :

c(t) = eq(0) + (c(0) — ceq(0))e™™ (3.20)
La dérivée seconde de ¢ est alors de 'ordre de :
)\2(0(0) - ceq(()))e’” (3.21)

et pour A > 1, on obtient une contrainte de précision (AAt)? < &4, beaucoup plus stricte
que la contrainte de stabilité déja calculée (J]AAZ] < 1).

A Tinverse, pour des temps assez grands, on a c(t) = c.,(t), et la contrainte de précision
est relachée. Autrement dit, c’est la contrainte de stabilité qui va primer pour le schéma
explicite.

On voit donc que I'on a deux intervalles en temps bien distincts :

— une phase transitoire (d’une durée de l'ordre de A\71), pour laquelle la contrainte de
précision est du méme ordre que la contrainte de stabilité du fait des gradients tres
prononcés. Un schéma explicite et un schéma implicite utilisent donc dans cette zone
des pas de temps du méme ordre.

— puis une phase dans laquelle la contrainte de précision devient non dimensionnante
par rapport a la contrainte de stabilité d'un schéma explicite. C’est la quun schéma
explicite a des performances dégradées. Ceci correspond donc a la partie raide de
I’évolution 4.

Un corollaire pratique de cette remarque est que les couches transitoires sont “cheres” a
intégrer puisque la contrainte de précision y est stricte. Ceci permet de comprendre le cofit
des redémarrages et de l'intégration des phases transitoires pour les systemes raides. Ceci
est un point essentiel pour les méthodes de séparation d’opérateurs qui contribuent a créer
des phases transitoires artificielles alors méme que les phases transitoires physiques ont déja
été intégrées. C’est ce qui sous-tend le choix des méthodes de type “Source-Splitting” déja
présentées.

3.2.1.3 Dépendance aux conditions initiales

Pour l'exemple (3.17), afin d’étudier la dépendance en la condition initiale de ¢(t), on
note C(t,¢p) la valeur, a 'instant ¢, de la solution issue de la condition initiale ¢(0) = ¢y. On

4Le terme “raide” n’est donc pas & prendre au sens “alpin” (ou pyrénéen selon les affinités) du terme,
puisqu’il suffit d’ajuster les conditions initiales avec ¢(0) = c¢q(0) pour supprimer la phase transitoire (donc
les gradients prononcés) et se placer directement dans la partie raide.
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a alors directement : o0t co)
, Co v
. — 3.22
. e (3.22)

1
et des que la phase transitoire est passée (t > X)’ on peut négliger la dépendance en fonction

des conditions initiales : oC (1 o)
, Co

/7~ 3.23

D (3.23)

Ceci se généralise pour un systéme avec plusieurs variables : les especes rapides (celles
concernées par les valeurs propres les plus négatives) ne dépendent pas des conditions ini-
tiales! Les systemes raides sont donc particulierement stables.

De maniere générale, pour sa composante rapide, le systeme “oublie” les conditions ini-
tiales et les erreurs accumulées (ce qui signifie en terme de données d’entrée des modeles par
exemple, qu’il ne sert a rien d’estimer finement les especes rapides!). On reviendra sur ce
point lors de ’approche par réduction.

3.2.2 Mise en oeuvre pratique des algorithmes implicites

Pour les systemes raides, hors phases transitoires initiales, il faut donc utiliser des méthodes
implicites afin de ne pas étre contraint par la stabilité.

L’utilisation de schémas implicites conduit néanmoins a des temps de calcul qui restent
prohibitifs : en effet, méme si les pas de temps sont plus grands que pour un schéma explicite,
la résolution des systemes algébriques associés aux schémas implicites reste cotiteuse.

Pour illustrer ce point, prenons I'exemple (largement générique) de la méthode d’Euler
implicite. Pour le systeme général initial, I'algorithme implicite s’écrit :

Cn+1 = Cp + Atf(cn+]_, tn—i—l) (324)

qui définit un systeme d’équations algébriques a priori non linéaires, qu’il s’agit de résoudre
numériquement en l'inconnue ¢, 1.
Une premiere approche simple est d’utiliser un algorithme de point fixe selon :

k k
D — o+ ALF(E®) ) (3.25)

Ceci est simple a mettre en oeuvre puisque le calcul est ... explicite.
La convergence de la suite d’itérées cgﬂl doit donner ¢,41 ... si la fonction f(.,t,11) est
contractante, c’est a dire que :
INAt <1 (3.26)

pour les A valeurs propres de la matrice jacobienne de f. Autrement dit, on retrouve assez
moralement la contrainte de stabilité des schémas explicites!

En pratique, on préfere chercher le zéro d’une fonction par une méthode itérative de type
Newton (beaucoup moins restrictive pour la convergence : tout va dépendre de I'initialisation
de la séquence, sur laquelle on ne s’étendra pas ici, méme si ¢’est un enjeu numérique majeur).
Cny1 est le zéro de la fonction :

g(c) =c—cp, — Atf(c,tpi) (3.27)
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La méthode de Newton s’écrit alors :
k41 k k
(5)0, (e = ) = —g(e) (3.28)

Il s’agit donc d’inverser a chaque itération (et a chaque pas de temps ...) une matrice de
dimension le nombre de traceurs (et ce en chaque maille). Heureusement, le fait de prendre
une matrice approchée (en pratique fixée sur plusieurs itérations et sur plusieurs pas de
temps) ne dégrade pas la solution (éventuellement la vitesse de convergence).

In fine, tout se ramene donc a une inversion de matrice, faite classiquement par une
méthode de type décomposition LU.

3.3 Quelques algorithmes de résolution

On va a présent présenter plus spécifiquement quelques algorithmes de résolution de la
cinétique chimique :

— les adaptations des méthodes multi-pas classiques, pour lesquelles se pose, comme on
vient de le voir, la question de la résolution des systemes algébriques induits,

— les méthodes hybrides de type “implicite-explicite”,

— les méthodes asymptotiques qui se fondent sur la forme “production-consommation”
(1.23) des équations de la cinétique chimique,

— et enfin les méthodes de Rosenbrock qui sont des méthodes particulierement perfor-
mantes (notamment pour la simulation de la pollution atmosphérique).

3.3.1 Méthodes multi-pas

L’algorithme de référence est la méthode de Gear (package LSODE [17]), qui est basée
sur un schéma de type BDF (Backward Differentiation Formula). En dehors de I’avantage
de pouvoir utiliser en “boite noire” un tel logiciel, une méthode BDF permet en particulier
de conserver les invariants linéaires ([31]). Un des désavantages majeurs est la non-positivité
éventuelle des solutions et le recours, habituellement proné, au clipping (la mise a zéro des
concentrations négatives en cours de calcul).

La formule générale s’écrit sous la forme :

Cn+1 = Cn + ﬁAtf(tn+17 Cn+1) (329)

ou [ est un coefficient et C), est une combinaison linéaire des valeurs précédentes et des
dérivées en ces points (tous les deux sont donc connus), qui dépendent de la méthode choisie.

Le potentiel de réduction du temps calcul d’'une méthode BDF réside essentiellement
dans 'accélération de la résolution de la contrainte algébrique :

1. soit par I'utilisation d’algorithmes d’algebre linéaire dédiés, prenant en compte la faible
densité des matrices traitées.
Dans [20] la structure creuse des systeémes linéaires a résoudre permet l'utilisation

conjointe d’algorithmes d’algebre linéaire spécifiques et de techniques de vectorisation
(sur I'ensemble des mailles), ce qui améliore considérablement les performances des
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schémas BDF. Dans [33], on pourra trouver de méme une analyse exhaustive des tech-
niques de pivot (critére de Markowitz) pour minimiser la densité des systémes linéaires
a résoudre. Les résultats obtenus dans [53] (avec l'utilisation du logiciel VODE, dérivé
de LSODE) vont dans la méme direction.

2. soit par une résolution dégradée, alternative a I’algorithme de Newton.
Une premiere approche se fonde sur la forme particuliere des équations de la cinétique
chimique, du moins en ’absence d’autocatalyse. Sous forme vectorielle, on a déja vu
qu’on avait une équation d’évolution de la forme (remarque 1.4.2) :

de _ P(c) — L(c)c (3.30)
dt

ou c¢ est le vecteur des concentrations, P est le vecteur (positif) de production et L
est la matrice diagonale positive de consommation. Un schéma de type BDF appliqué
a une telle équation différentielle conduit alors a la résolution du systeme algébrique
réécrit sous la forme :

st = (I + BALL(cin)) "N (Ch + BALP(cpsr)) (3.31)

ou la matrice I + BAtL(c,.1) est diagonale et en conséquence inversible de maniere
directe.

La méthode TWOSTEP, proposée dans [50, 51, 57], est fondée sur la méthode BDF
d’ordre 2, avec une résolution par un algorithme de type Gauss-Seidel de ’équation
algébrique :

c= (I + BAtL(c)) 1 (C, + BAtP(c)) (3.32)

En pratique, deux itérations suffisent pour résoudre cette équation. Une telle résolution,
de type explicite (sans inversion de matrices), améliore considérablement les perfor-
mances en terme de temps calcul (voir [57] et les benchmarks [35, 53]).

Une seconde approche revient a approcher le Jacobien par une matrice triangulaire,
ce qui évite la encore d’avoir a utiliser des méthodes itératives ou directes pour les
inversions numériques ; elle est par exemple préconisée dans [23]. On rappelle qu'une
approximation du Jacobien n’induit qu'une modification de la vitesse de convergence
de l'algorithme de Newton ([7, 21]).

Remarque 3.3.1 (Un autre point de vue pour Twostep)
On peut voir Twostep selon un point de vue différent de celui de l'article initial ([51]) : pour
schématiser, la méthode revient a préconditionner pour pouvoir utiliser un algorithme de
point fixe.

L’algorithme de Newton appliqué a I’'équation

g(e) ™ c— ¢, — BAL(P(c) — L(c)c) = 0 (3.33)

s’écrit sous la forme :
dg

50 (T =) = —g(c") (3.34)
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avec
99 of
Jc oc
Si on approche la matrice jacobienne par la matrice diagonale des termes de consommation
selon :

() =T —pAt==(c"), f(c)=P(c) — L(c)c (3.35)

%(ck) ~ —L(c") (3.36)
on a aisément :
= (I + BALL(F))H(C,, + BALP(F)) (3.37)

et on retrouve exactement la formulation de Twostep.

On peut donc interpréter Twostep comme un choix d’approximation diagonale du Jaco-
bien, lors de l'algorithme de Newton. Une telle approche a déja été proposée par Shampine
dans [38], avec notamment des conditions de convergence.

Ce point de vue permet de comprendre la nécessité d’utiliser des lumpings pour Twostep.
Par exemple, pour le systéeme (que I'on aura fréquemment 'occasion de rencontrer) :

dx
Ee—=—2+Yy, e— =T — 3.38
o y. e y (3.38)
le Jacobien est constant et bien entendu tres mal approché par sa diagonale puisqu’en parti-
culier on ne “voit” pas la valeur propre 0. Si on se place dans le systeme lumpé (v = x4y, y),
on a par contre :

%:0, 5%:u—2y (3.39)
et le Jacobien est bien approché par sa diagonale (au sens ou les valeurs propres sont cor-
rectement restituées) . "

Remarque 3.3.2 (Résolution couplée de la diffusion et de la chimie)

Les techniques utilisant le caractere creux des systemes linéaires a résoudre ne sont pas
généralisables aux cas 3D lorsque diffusion et chimie sont résolues de maniere couplée (de
préférence a une méthode de séparation d’opérateurs). L’algorithme Twostep présente par

contre 'avantage de pouvoir étre étendu au cas du couplage avec la diffusion ([52]) =

Remarque 3.3.3 (Méthode EBI)
La méthode EBI (Euler Backward Iterative) est fondée sur le schéma d’Euler implicite ap-
pliqué a I’équation :

d

d—j = P(c) — L(c)e (3.40)

sous la forme : Py +1)
n+1 n+1 C? + 5 c" At
G file™) 1+ Li(emth At ( )

qui est le pendant direct de Twostep (pour l'ordre 1). Une méthode de type point fixe

C?+1,k+1 _ fi(cn+1,k> (3.42)

5Ce qui est & mettre en regard du tableau 3.1.
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ne converge pas, avec des pas de temps acceptables, pour des raisons qui ont déja été
évoquées.

La méthode EBI consiste alors a partitionner les especes en plusieurs groupes G, G,
.G 1 et Gy, (selon la réactivité des especes avec le radical OH et les termes de couplage
existant entre especes ) et a résoudre par blocs de maniere exacte le systeme algébrique,
successivement pour chaque bloc G; (avec i < m), et par point fixe pour le bloc restant G,,.

Des méthodes du méme type sont proposées dans [10, 41]. On pourra également se référer
a toute la littérature sur la “méthode des familles” ([5, 28]). =

3.3.2 Méthodes hybrides

A la suite des travaux de [3], des méthodes hybrides ont été proposées pour la résolution
des équations de la cinétique chimique. L’idée directrice est de partitionner ¢ les especes en
deux groupes, les especes lentes x et les especes rapides y, qui correspondent a une partition
de la dynamique en une partie lente (f;) et une partie rapide (fz) selon :

dx dy

at = fr(v,y) , at = fr(z,y) (3.43)

Un schéma explicite peut alors étre appliqué pour la résolution de la partie non raide (pour
I'intégration des especes lentes) alors qu’un schéma implicite est utilisé pour la partie raide
(correspondant aux especes rapides).

L’avantage principal réside dans la diminution de la taille des systemes a inverser, donnée
a présent par le nombre de variables rapides. Les modes opératoires se distinguent pour les
méthodes de ce type par le critere de partition, les schémas utilisés et ’ordre de succession
des intégrations des sous-systemes.

On peut par exemple se référer a [12] pour un algorithme fondé sur les schémas d’Euler
implicite et explicite. La partition des variables se fait classiquement par comparaison des
temps de vie des especes et du pas de temps At. La séquence d’intégration des sous-systemes
proposée est la suivante :

— intégration du systéme non raide (a I'aide du schéma explicite) pour les especes lentes,

Ty4—T
% = [o(@n; Yn) (3.44)

— intégration du systeme raide (a l’aide du schéma implicite) pour les especes rapides,

en utilisant les valeurs modifiées des especes lentes,

Yn — Yn *
S = e ) (3.45)

— réactualisation des especes lentes (par intégration du systéme non raide tenant compte
des especes rapides modifiées) :

Tn4+1 — Tn o

At fL(xna yn-l—l) (346)

60n ne précise pas plus ici.
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Dans la méme veine, la méthode IEH (Implicit Explicit Hybrid) utilise la méthode de Gear
pour la partie raide (via le solveur LSODE) et une méthode de second ordre (Adams-
Bashforth) pour la partie non raide ([6, 49]). La partition des variables n’est pas détaillée et
au contraire de la méthode précédente la réactualisation des especes lentes n’est pas effectuée.

On reviendra sur de telles approches dans la partie consacrée a la réduction .

3.3.3 Schémas asymptotiques

A la suite des travaux de Young et Boris (I’algorithme hybride CHEMEQ dans [63]),
de nombreux schémas numériques a précision dégradée mais plus rapides 7 ont été proposés
pour la simulation de la cinétique chimique.

Soit une espece chimique 7 dont la concentration évolue selon :

% = filc) = Pi(c) — Li(c)c; (3.47)
avec P; et L; les termes (positifs ou nuls) de production et de consommation. Ces termes
dépendent, en toute généralité, de I'’ensemble des concentrations.

Les schémas asymptotiques sont fondés sur une hypothese de linéarisation du terme
source. En considérant en premiere approximation que P; et L; sont constants sur un inter-
valle de temps de longueur At, on a aisément :

mn

P!
At = exp(~LY AR + (1 — exp(~Lj A) 7 (3.48)

en notant ¢ = ¢;(t,), ¢ = c(t,), L = L;(c") et PI* = P;(c").

Le schéma QSSA (pour Quasi-Steady-State Approximation : [16]) revient & partitionner
les especes selon leur temps de vie 77" = (L?)~! en un jeu d’especes lentes et un jeu d’especes
rapides pour lesquels une intégration différente est réalisée. Notons que le nom est trompeur,
car I’hypothese essentielle est une hypothese de linéarisation, sans lien avec une hypothese
de quasi-stationnarité (au sens de la section consacrée a la réduction).

La partition des especes et la résolution de (3.48) sont faites par exemple de la maniere

suivante :
n

(]

100

— pour les especes lentes At < , le schéma d’Euler explicite est utilisé :

L= g (P — LAt (3.49)

— pour les especes rapides At > 107", (3.48) est approchée par :

P
At = T (3.50)

7... ou présumés comme tels, une analyse comparative du temps calcul & précision fixée se révelant étre

particulierement défavorable pour de tels schémas ([35, 37] par exemple).
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e

— pour les especes intermédiaires 1; < At <107, (3.48) est utilisée telle quelle.

Un tel algorithme est une version modifiée de 1’algorithme de type prédicteur-correcteur
initialement proposé par Young et Boris ([63]). Cette derniere méthode s’avere étre moins ra-
pide ([29]) mais plus précise ([37]). Notons que les implémentations varient considérablement
d’un auteur a 'autre, ce qui rend particulierement difficile toute tentative de comparaison

([37]).

Remarque 3.3.4 (QSSA d’ordre supérieur)
Plusieurs tentatives ont été faites pour améliorer la précision des méthodes de type QSSA.
Une premiere approche, non spécifique aux méthodes QSSA, est fondée sur des extrapolations
de Richardson (]9]) et permet d’améliorer considérablement la précision.

Une technique plus spécifique aux algorithmes de type QSSA est basée sur des développements
d’ordre élevé de I'exponentielle ([57, 58]). Notons d’abord que la formule asymptotique (3.48)
peut aussi s’écrire :

G(—L'At) —1
A P, (3.51)

avec G(z) = €* ou bien une approximation consistante de ’exponentielle (par exemple un
développement de Padé). La positivité des solutions est alors garantie pour

G(z)—1

z

At = G(=LMAt)e! + At

G(z) >0, >0 pourz<0 (3.52)

On pourra par exemple se référer a [58] pour la définition d’algorithmes QSSA d’ordre 2,
fondés sur le développement de Padé :

G(z) = ;2 . (3.53)

A
1— il
z—|—2

Remarque 3.3.5 (A propos des regles “ad hoc”)
Un inconvénient des schémas QSSA est la nécessité d’avoir recours a des regles ad hoc (“ad
hoc rules” ® dans [53]), souvent obscures.

On en relevera notamment quatre :

— la résolution (simplifiée) pour les especes rapides est faite chez certains auteurs par :

pn
Pl =L 3.54
que 'on retrouve bien entendu si lim G(z) = 0. Il est parfois préconisé ([15]) d’itérer

un certain nombre de fois selon :
n+1,k+1 _ PinJrl’k EL=1 K 3.55
G _Lﬁ+1’k’ — Sty ( )

avec

prl=pr Lt =Ly (3.56)

pour mieux prendre en compte les couplages entre especes rapides.

8Le terme poli(tiquement correct) pour désigner I’huile de coude informatique.
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— on notera que la contrainte algébrique (de fait) qui est utilisée pour calculer les especes
rapides en ¢, est évaluée en t,. Cela revient a décaler en temps la dépendance des
especes rapides vis a vis des lentes, alors que la bonne contrainte (voir section consacrée
a la réduction) s’écrit :

At =1 (3.57)

C’est un des points essentiels qui explique la perte de précision d’une telle implémentation
des méthodes QSSA.

— certains auteurs ([15]) préconisent d’ordonner les especes rapides. Notons que, de la
méme maniere, les especes doivent étre ordonnées pour la résolution du systeme linéaire
par l'algorithme de Gauss-Seidel dans le cadre de Twostep ([57]).

— il est fréquemment recommandé ([15, 16, 40, 53, 57]) de travailler avec des especes
“lumpées”, définies comme combinaison linéaire des especes initiales (“the lumping tri-
ck” dans [50], page 81). Une telle technique permet d’améliorer notablement la précision
des schémas QSSA. Les explications different grandement d’un auteur a 'autre : ar-
gument de conservation de masse pour certains groupes d’atomes ([15, 16, 29]) ou
analogie avec un préconditionnement de systeme ([53]).

Les lumpings proposés varient également d’un schéma cinétique a un autre, ce qui est
moral, mais d’une maniere plus troublante également a schéma fixé.
Il est habituellement défini, sans plus de précision, les especes suivantes ([16]) :

NO, =NO+ NOy, O, =NO;s+ Os (3.58)
voire ([15])
OsNO =03 —NO, NO, = NOs+ NyOs (3.59)
NO, = NO+ NOy+ NOs +2N,05 + HNOy + HNO, + PAN (3.60)
et ?
HO,=0OH+ HOy, PANX = PAN + (505 (3.61)

En particulier, les techniques de lumping sont étroitement liées a la construction des modeles
réduits (voir plus loin).

Un autre point essentiel concerne la résolution de la contrainte algébrique (3.57) : en
quelques mots, les schémas QSSA sont peu précis, non pas du fait de ’hypothese de quasi-
stationnarité ', mais parce que la contrainte algébrique est mal résolue numériquement.

3.3.4 Meéthodes de type Rosenbrock

Les méthodes de type Rosenbrock fournissent des bons exemples de schémas rapides
et a précision suffisante pour les applications de type pollution atmosphérique (une erreur
relative en deca du %). L’idée générique ([32]) est de remplacer les systemes non linéaires
qui apparaissent dans les méthodes implicites directement par des systéemes linéaires qui

90n s’arrétera la.
0Qui est de toute maniére faussement sous-jacente.
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ne sont plus construits lors de la résolution des systemes non linéaires, par exemple avec
I'algorithme de Newton, mais qui sont donnés, dés le départ, avec le schéma considéré .
C’est par exemple le cas de la méthode a un pas :

af

Cnyr=Cn+k, (I— At%(cn))k = Atf(cn) (3.62)

pour la résolution de 'EDO
dc
= =1 (3.63)

Cette méthode correspond bien entendu a la premiere itération d’un algorithme de Newton
utilisé pour la résolution du systeme algébrique issu d’un schéma d’Euler implicite.

Une telle méthode se généralise et on définit une méthode de Rosenbrock a s pas par :

Jj=i—1

Cpnil = cn—i—Zbkzl , ki =Atf(c, + Z ik, —1—At (cn Z%J (3.64)

les coefficients b;, a;; et 7;; étant donnés pour chaque schéma (et fixés par des considérations
de consistance essentiellement).

On se réfere a [14, 56] pour une présentation exhaustive des méthodes de Rosenbrock
et leur application a la simulation de la pollution atmosphérique. Les méthodes, a respec-
tivement deux et quatre pas, ROS2 et RODAS3 sont notamment testées avec succes dans
22, 44, 59]. Par contre, seule la méthode ROS2 conserve la propriété de positivité des
solutions. Le benchmark [34] confirme que les méthodes de Rosenbrock sont actuellement
les méthodes les plus efficaces en terme de compromis cout-précision pour la pollution at-
mosphérique.

Par exemple, la méthode ROS2 s’écrit :

Cn+1 = (k?l + k?g) (365)

(I — "YAtJ)k’l = f(Cn,tn) s (I — ")/Atj)kg = f(Cn + Atk’l,tn+1) — 2")/AtJ]€1

avec J une approximation du Jacobien de f et v = 1 4 1/4/2 qui permet de garantir la
L-stabilité de la méthode.

3.4 Réduction de modeles

Pour finir ce chapitre, on va présenter brievement le cadre théorique qui sous-tend I'exis-
tence de la raideur numérique.

On a vu que les difficultés rencontrées pour la résolution numérique des systemes raides
proviennent de la grande disparité des échelles de temps. Modulo un adimensionnement et

10On parle aussi de méthodes linéairement implicites.
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un changement éventuel de base, le systéeme (que I'on a déja introduit sous une forme ana-
logue pour la présentation des méthodes hybrides) peut alors s’écrire sous la forme suivante
(souvent appelée “lent/rapide”) :

Ccii_‘: = fL($7y> ) 5@ = fR(xay> (366)

dt
avec x (resp. y) les especes lentes (resp. rapides) et & un rapport d’échelle de temps ca-
ractéristiques supposé étre tres petit par rapport a 1.
On peut alors montrer que pour de tels systemes, il existe apres une phase transitoire de
durée O(g) un modele réduit donné par :

X~ ey) . Talry) =0 (3.67)
qui approche a O(e) pres le systéme initial.

Ce systeme de dimension réduite (sa dimension est la dimension des variables lentes x) est
un systeme algébro-différentiel défini par un systéme de contraintes algébriques fr(x,y) =0
définissant les variables rapides y en fonction des variables lentes x par une relation du type
y = h(zx). Par application du théoréme des fonctions implicites, ceci nécessite bien str que
0fr/0y soit inversible (en réalité de valeurs propres a partie réelle strictement négative pour
assurer la convergence en dehors de la couche transitoire vers ce modele réduit).

Ce théoreme (le théoreme de Tikhonov ou le théoreme de la variété centrale “globale”)
permet donc de donner un cadre a de nombreuses propriétés déja rencontrées au cours
de ce chapitre et dont un exemple tres simple avait été fourni par l'exemple (3.17) : la
non dépendance a des conditions initiales, la tres grande stabilité du modele hors couche
transitoire (le modele convergeant systématiquement vers la contrainte y = h(x)), l'intérét
de travailler dans des bases de variables spécifiques (les lumpings s’interprétant comme les
changements de base permettant de partitionner le systeme sous la forme requise), etc.

Une alternative séduisante a 'utilisation de méthodes implicites est donc la construction
puis la résolution des modeles réduits : les échelles de temps rapides ayant été filtrées, des
algorithmes explicites peuvent alors étre utilisés.

En cinétique chimique, les modeles réduits sont une généralisation des techniques clas-
siques de type Approximation de I’Etat Quasi Stationnaire (AEQS ou QSSA en anglais) ou
Approximation de I’Equilibre Partiel. Un exemple est par exemple fourni dans la figure 3.1
par la convergence pour plusieurs jeux de conditions initiales du systeme NO, NOy et O3
vers le modele réduit défini par I’équilibre de la réaction globale :

NO+ 0325 NO,, NO; 2 NO+ 05 (3.68)

que l'on ne détaille pas plus (le lecteur averti aura remarqué que ces réactions ne conservent
méme pas les éléments).
équilibre est alors donné par :
L’ lib t alors d

k
tvofos , 22 (3.69)
CNO, 3}
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Fic. 3.1 — Convergence vers le modele réduit pour le systeme NO, NOy et Os.
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avec k; la constante cinétique de la réaction 1.

Un écueil important a 1'utilisation de ces méthodes est la difficulté de mise en oeuvre
lorsque le modele réduit ne peut pas étre calculé explicitement ou doit étre adapté a chaque
pas de temps (par exemple, sa dimension variant au cours du temps). Par contre, ce cadre
permet de donner un cadre extrémement puissant pour comprendre le comportement quali-
tatif des modeles et des schémas numériques (par exemple pour les splittings).

Notons pour terminer ce chapitre que ces propriétés (systemes multi-échelles générant
une raideur numérique et associés a une hiérarchie de modeles) peuvent s’étendre a une
large classe de systeme :

1. par exemple, pour la modélisation des aérosols, les dynamiques rapides correspondent
a la mise a ’équilibre thermodynamique (entre phase gazeuse et phase particulaire)
des petites particules submicroniques ;

2. en dynamique géophysique, les approximations quasi-géostrophiques pour le champ de
vitesse (équilibré par les gradients de pression) rentrent aussi dans ce cadre théorique.
Les problemes étant de nature ondulatoire, les valeurs propres sont alors imaginaires
pures le modele générique étant :

de . dceq
= Ao calt) +

Le modele réduit correspond alors a un modele “filtré” (ou moyenné) des composantes
initiales des ondes a courte fréquence,

L 2=—1, A>0 (3.70)

3.5 Exercices

3.5.1 Stabilité

On s’intéresse a I'équation :
dc
— =X, A<O0 3.71
v (3.71)
Retrouver la condition de stabilité du schéma d’Fuler explicite et montrer que le schéma
d’Euler implicite est inconditionnellement stable.
Les méthodes d’Euler explicite et implicite sont des méthodes de Runge-Kutta, i.e. des

méthodes qui, pour résoudre (t) = F(t,c(t)), se mettent sous la forme :

Cnp1 = Cn + ALY T BiF (ty + %A, ¢ )

ol Vi € [[1, S]] Cni = Cp + At ijl aijF(tn + ijAt, Cn,j) (3.72)

A quelle condition une méthode de Runge-Kutta sous la forme (3.72) est-elle explicite ¢

Soit A la matrice (o), b le vecteur (3;); et e le vecteur (1,---,1)" de longueur s. Pour
I’équation (3.71), écrire le schéma sous la forme c,+1 = R(z)c, ot z = AA.

R est la fonction de stabilité. La région de stabilité est définie par S = {z € C/|R(z)| <
1}. Déterminer la région de stabilité de la méthode d’Euler explicite.

Une méthode est dite A-stable si S D C~ = {z € C/Re(z) < 0}. Elle est dite L-stable si
lim, . |R(2)| = 0. Montrer que la méthode d’Euler implicite est L-stable.



3.5. EXERCICES 53

3.5.2 Retour sur le splitting

On souhaite montrer que, dans le cas raide, l'analyse classique de l'erreur due a la
séparation d’opérateurs n’est plus valide. On considere I’équation raide :

A
d = —ct Be (3.73)

Calculer lerreur due au splitting A — B.
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Chapitre 4

Simulation numérique des processus
d’advection-diffusion

Dans le cadre d’'une méthode de séparation d’opérateurs, les processus d’advection et
de diffusion sont résolus indépendamment des termes réactifs dans 1’équation de dispersion
réactive. Le point le plus difficile est en pratique I'advection (méme lorsqu’elle est linéaire)
car des propriétés qualitatives strictes doivent étre respectées numériquement : conservation
de la masse, positivité, monotonie.

Ce chapitre est organisé de la maniere suivante. Dans la premiere section, on traite
I'advection linéaire. Apres avoir rappelé la base de I'approche lagrangienne (méthode des
caractéristiques), on présente brievement les notions classiques de stabilité. Le comportement
qualitatif de la solution numérique est étudié a ’aide de la notion d’EDP équivalente qui
permet notamment de préciser la diffusion numérique observée. Une partie spécifique traite
des méthodes permettant de réduire la diffusion numérique (méthodes a limiteurs de flux), ce
qui est en pratique ’enjeu principal de la simulation numérique de cette classe de problemes.

Dans une seconde section, la simulation numérique de la diffusion est rapidement présentée,
ne présentant pas d’écueil particulier.

4.1 Advection

4.1.1 Modele. Méthode des caractéristiques.

On considere ici 'advection d’un traceur, de concentration ¢, dans un milieu de vitesse
supposée connue et constante dans un premier temps, V :

dc

5 +div(Ve) =0, c(z,t =0)=cy(x) (4.1)

avec des conditions aux limites si nécessaire (domaine non borné).
Dans le cas ou V est constante, il y a bien entendu une solution évidente (figure 4.1) :

c(x,t) = co(x — Vi) (4.2)

95
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t=0 >0

F1c. 4.1 — Advection d’un traceur

Pour préparer le cas général, on peut retrouver le résultat précédant en recourant a une
approche lagrangienne (la méthode des caractéristiques). Soit X, () la courbe caractéristique
issue de la position initiale x :

dX

7‘700 =V s XIO(O) = T (43)
et soit G, (t) = ¢(Xy(t),t) la concentration du traceur le long de cette courbe. On a

évidemment :

dcg, Oc  dXy Oc

dt Ot dt or

c’est a dire que ¢,,(t) est constant et vaut donc cy(zp). Ceci implique également que les
courbes caractéristiques sont des droites :

(4.4)

Xxo (t) =x9 + Vi (45)

On a donc la solution en (z,t) lorsque la vitesse est constante : les caractéristiques sont alors
des droites paralleles et il ne passe qu'une caractéristique en (z,t), celle associée au point
ro9 = x — V't. Par conservation du traceur le long de la caractéristique, on a directement le
résultat (figure 4.2).

L’extension du modele précédent au cas d'un champ de vitesse a divergence nulle (divV =
0) est immédiate en remarquant que ’on a alors :

div(Ve) =V - Ve (4.6)

Dans le cas plus physique ou le champ de vitesse V' est relié a la densité du fluide “porteur”
p par I’équation de continuité :

ap . B
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x-Vt X

Fi1G. 4.2 — Méthode des caractéristiques. Cas d’une vitesse constante.

il est plus aisé de travailler pour décrire le traceur avec sa fraction massique que 1’on notera
par exemple m = ¢/p. Il est direct de constater que 'on a alors :

om
WJrV-Vm—O (48)

et le long des caractéristiques, m = ¢/p est conservé. Les caractéristiques correspondent alors
exactement aux lignes de champ (tangentes au champ de vitesse et qui ne se coupent pas).

4.1.2 Propriétés qualitatives

Plusieurs propriétés découlent de maniere directe de ce résultat :
1. la positivité des solutions si on part d’une condition initiale positive;

2. la monotonie : il y a un “principe du maximum” pour l'advection, ie on ne doit pas
créer d’extrema dans la solution qui n’existent pas dans la condition initiale; il est a
noter que dans le cas linéaire, “positivité” et “monotonie” sont étroitement associées.

Un schéma numérique va donc devoir respecter ces propriétés qualitatives clés.

4.1.3 Quelques schémas “évidents” de discrétisation spatiale

On se donne une discrétisation de I’axe des x selon (x;) avec un pas de maillage supposé
constant Az (figure 4.3). On discrétise également le temps selon une suite (¢,,) avec un pas
de temps supposé egalement constant At.

On va dans un premier temps construire des schémas numériques avec la méthode des
lignes, ie en discrétisant d’abord le probleme en espace avant de résoudre le probleme en
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‘ Li-1 | X

FiGc. 4.3 — Maillage

temps. On notera par abus ¢;(t) ~ ¢(x;,t), I'indice i correspondant ici a un point de maille
et non a une espece (on advecte en parallele les diverses especes).
Une forme conservative du schéma numérique est définie par :

dei _ ficipp = firipo

4.9
dt Ax (4.9)

ot le flux (entrant) f;_;/2 approche le flux au niveau de la facette z;_1,2 (Ve(x — Ax/2,1)).
Cette forme garantit bien évidemment la conservation de la masse.

Un premier schéma évident, en supposant que V' > 0, est de faire 'approximation pour
le flux :

ficip =Veia (4.10)

ou, ce qui revient au méme, d’approcher par différences finies le gradient spatial selon :

clx — Ax) = c(z) — Ax%(m) +... (4.11)
T
ce qui conduit au schéma :
dCi Ci—1 — C;
— =V—- 4.12
dt v Ax ( )

On appelle classiquement ce flux le flux upwind ou décentré ou encore donor-cell, chacune
des terminologies étant évidente.

Une seconde approche pourrait étre d’approcher le flux entrant au niveau de la facette
en x;_j/; par :

Ci—1+ G
fiiija = V—12 (4.13)
ou de maniere équivalente d’utiliser le développement de Taylor :
dc c(x + Azx) — c(x — Ax)
— ~ - 4.14
dx (z) 2Ax + ( )
On obtient alors le fluz centré :
de; i1 — Cj
G _ypliol” G (4.15)

dt 2Ax
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4.1.4 Discrétisation temporelle

On notera ¢ la solution au temps t,, et en z;. Par exemple, pour le flux upwind défini
précédemment, plusieurs discrétisations en temps sont possibles, parmi lesquelles le schéma
upwind explicite obtenu avec un schéma d’Euler explicite :

2 n

i (4.16)

n+1 n

. — !

i I
At Ax

C

Cette maniere de procéder (discrétisation spatiale pour obtenir une EDO puis discrétisation
en temps) définit ce que 1'on appelle communément la méthode des lignes.

Notons que I'on aurait pu directement proposer ce schéma de discrétisation en discrétisant
de maniere conjointe temps et espace (on parle alors souvent de schéma DST pour “Direct
Space Time”). Une maniere directe de procéder aurait été d’utiliser la relation exacte :

C(ZEZ‘, tn-i-l) = C(xi - VAtv tn) (417)

puis de chercher une interpolation par rapport aux points de discrétisation permettant d’es-
timer c(x; — VAt,t,). Dans le cas du schéma upwind, si V' > 0 et VAt < Az (on reviendra
sur cette condition par la suite), il est licite d’interpoler x; — VAt entre x;_; et x;. Une
interpolation linéaire donne directement le schéma upwind écrit sous la forme :

A = (1 —a)c! +ac, (4.18)

(]

avec a le nombre de Courant-Friedrichs-Lewy (CFL) défini dans la section suivante comme :

De la méme maniere, on peut définir une méthode d’ordre 3 (le schéma DST3) par :

G =y, + vy 0l + ¢ (4.20)
avee 1y = —a(l — @?)/6, 71 = a2 — a)(1+a)/2, 3 = (2— a)(1 — %)/2 ot 3 = —a(2 -

a)(1—a)/6.

4.1.5 Stabilité et ordre d’un schéma

De maniére identique a ce qui a été présenté pour les EDOs (chapitre 3), l'erreur de
discrétisation numérique comprend deux éléments ;
— une erreur locale liée a I'erreur de discrétisation sur un pas de temps (fonction de I’ ordre
du schéma) ;
— une propagation des erreurs antérieures (dont le comportement est donné par une étude
de stabilité).
L’erreur locale se calcule en remplagant dans l’algorithme itératif la solution approchée ¢!’
par la solution exacte c(z;,t,). Par exemple, pour le schéma upwind, on définit le résidu p}"
par :
c(xiy tnyrr) — (g, ty) B Vc(xi_l,tn) —c(zitn)
At Az —

(4.21)
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Par développement limité, on obtient aisément pI' = O(At) + O(Ax).

On a alors directement pour l'erreur globale €' = ¢(x;,t,) — ¢! par soustraction :
n+1 n n n
i & i1~ & n

. Ve =9 4.22
Y Ao pi (4.22)
qui fait clairement apparaitre deux contributions a l’erreur.

L’étude de la stabilité est liée a la propagation des erreurs au cours du temps. La stabilité
du schéma numérique est classiquement étudiée par 'analyse dite de Neumann en considérant
une condition initiale donnée par un mode de Fourier. En se restreignant a 'intervalle [0, 27]
avec des conditions aux limites périodiques (sans perte de généralité), on considere alors le
mode de Fourier exp(jkz) avec j2 = —1 et on cherche une solution de la forme :

3

= (rp)" exp(jk;) (4.23)

7

Le point clé est le comportement du coefficient d’amplification r;, qui doit rester de norme
inférieur a 1 pour tout mode de Fourier k. En effet, par superposition, pour toute condition
initiale périodique co(x) =Y, (co)r exp(jkz), on alors :

ch = (ro)" exp(jk;) (4.24)
k

soit :

leall? =Y lenl? < lleoll® (4.25)

Par exemple, pour le schéma upwind explicite, on obtient directement :

n+1
L =1+ a(exp(jkAz) — 1) 2 (4.26)
Ci

C

La stabilité est assurée par |ry| < 1 et ce pour tous les modes de Fourier. Autrement dit
avec :

Iri]? = 1 —2a(1 — a)(1 — cos(kAzx)) (4.27)
on obtient (on se place depuis le début dans le cas V' > 0) :
VAt
T Az S (4.28)

que 'on appelle classiquement la condition de Courant-Friedrich-Lewy (condition CFL).
Notons que cette condition aurait pu étre obtenue en demandant a respecter la positivité

de la solution écrite sous la forme :

At = (1—a)c! +ach (4.29)

(]

Il est a noter que cette condition est d’autant plus pénalisante pour le choix des pas de
temps que le champ de vitesse est élevé et surtout que le maillage est fin. Ceci signifie en
pratique, par exemple dans le cas de la simulation atmosphérique, que la condition CFL est
contraignante pour les applications a petite échelle.
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4.1.6 Comportement qualitatif : notion d’EDP équivalente

Il est “physiquement” clair qu'une propriété qualitative importante des schémas numériques
présentés ci-dessus va étre la génération d'une diffusion numérique artificiellement créée par
la discrétisation.

Par exemple, pour le schéma upwind, prendre pour le flux f;_12 = Ve;y revient a
considérer que toute la matiere dans la cellule ©; ; (y compris celle qui vient de rentrer dans
cette cellule) contribue immédiatement au flux sortant en z;_y /.

Il est a noter, toujours dans le méme ordre d’idée qualitative, que le comportement du
schéma centré sera probablement moins diffusif. En effet, le flux se calcule a partir du flux
upwind en rajoutant une correction “antidiffusive” selon :

v
ficijp =Veia + E(Cz —Ci1) (4.30)

Pour la terminologie, il suffit de remarquer que si ¢; > ¢;_1, la correction consiste a rajouter
de la matiere dans la cellule ; et a enlever dans la cellule €2;_; (ce qui est 'inverse de ce
qu’aurait produit un flux de diffusion).

Ces remarques intuitives sont confirmées par les résultats de la figure 4.4.

Le comportement qualitatif des schémas numériques peut s’étudier de maniere plus
systématique par le recours a la notion d’EDP équivalente, une EDP qu’approche le schéma
numérique de maniere plus fine que le modele d’advection. L’étude qualitative du schéma
se fait alors sur cette EDP, étant plus aisée sur un cas continu que sur un cas discret (voir
ci-aprés pour s’en convaincre).

Par exemple, pour le schéma upwind, en allant plus loin dans le développement de Taylor :

clx —Az) —c(x) _ de

de 4 Brde
Ax dz

(x) + 5 @(x) + O(Az?) (4.31)

ce qui montre que le schéma upwind est en réalité une approximation a l’ordre 2 de 'EDP :

Oc V@c B VAxa_Qc

— — = 4.32
ot " Vor T 2 ox? (4.32)
ce qui justifie évidemment le caractere diffusif du schéma.
Pour le schéma centré, avec :
c(x — Ax) — c(x + Ax) de Az? d3c A
=—x)— —— O(A 4.33
2Ax dx (z) 6 dz3 (z) + O(Ax) (4.33)
I'EDP équivalente est (a l'ordre 4) :
dc dc VAz? 93¢
- == - _ - 4.34
ot ox 6 or (4.34)

qui a un comportement dispersif (les modes de Fourier ne sont pas advectés a la méme vi-
tesse).
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De maniere générale, ’étude qualitative de 'EDP

oc @ 0%c d3¢c

e + V@x =aos + R cp(z,0) = Ar(0) exp(jkx) (4.35)

est directement donnée en cherchant une solution de la forme Ag(t) exp(jk(z — wt)). En
identifiant les parties réelles et imaginaires, on trouve :

cr(w,t) = Ap(0) exp(—k*at) exp(jk(z — V) — jkBt) (4.36)

a comparer a la solution de I’équation d’advection A(0)exp(jk(z — Vt)). On a donc bien
un comportement diffusif lié & « et un comportement dispersif (un déphasage) lié a f.

Les solutions des méthodes “upwind”, “centré” et “DST3” sont tracées dans la figure
4.4 pour une nombre de CFL égal a 0.4 apres 20 pas de temps. On note le caractere tres
diffusif du schéma upwind, le caractere dispersif du schéma centré et le bon comportement
du schéma DST3, qui apparait moins diffusif que le schéma “upwind” mais pour lequel la
positivité n’est malheureusement plus assurée.

4.1.7 Méthodes a limiteurs de flux

En revenant sur les propriétés qualitatives que I’on souhaitait voir satisfaites par le schéma
numérique, il apparait donc difficile de pouvoir concilier a la fois :

1. la positivité de la solution (de maniere équivalente pour le cas linéaire, la monotonie,
ie la non-création d’extrema artificiels) ;

2. une faible diffusion numérique.

Ces deux points sont évidemment clés si ’on cherche a suivre un traceur issu d’une émission
ponctuelle accidentelle (par exemple un radioélément) dans le cas par exemple de la disper-
sion atmosphérique. Le critere de positivité est clair et il est a noter que ’on se trouve dans
le cas le plus défavorable d’un pulse pour la condition initiale...

Réanalysons qualitativement les schémas upwind et centré présentés précédemment. Le
cas général est celui des schémas a 3 points avec :

At =+ B+ alg (4.37)

1. Le critere de positivité implique que les coefficients «;, (3; et ; sont positifs ou nuls.

Notons que cette condition est tres restrictive car elle permet de garantir la positivité
dans tous les cas (ie dans le cas extréme ou toutes les concentrations sont nulles sauf
dans une maille a ¢,,). Dans le cas d’une situation “réelle”, une condition de positivité
plus souple (mais dépendant de la situation) pourrait étre suffisante. C’est ce que 1'on
va utiliser plus loin pour définir les limiteurs de flux.

2. Le critere de conservation de masse implique que :
Qip1+ G +7i-1 =1 (4.38)

c’est a dire que deux jeux de coefficients sont suffisants pour définir le schéma.



4.1. ADVECTION 63

2 T T [ T [
e ——- Upwind
[ ‘\ —-— Centered
| \ DST3
| \ —— Exact
1 L _|
(&)
AN
AN
N
~ ~
O L T~ —~ —
_1 | | | | | | |
0 5 10 15 20

grid cell

Fic. 4.4 — Comparaison des méthodes upwind, centrée et DST3 pour un nombre de CFL
égal a 0.4 au bout de 20 itérations.
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3. Afin d’étudier le comportement diffusif du schéma, on va le réécrire sous la forme
équivalente suivante (on a noté ¢;y1/2 = (¢; + ¢iy1)/2) :

it = = (aip1jaCiinye — Gim1j20lyyn) + Winry2(cly — ) = vicaja(e] —ciy)) (4.39)

qui fait apparaitre des termes de type advectif (a;41/2) et des termes de type diffusif
(Vi41/2). Les deux jeux de coefficients a;y1/2 et v;41/2 sont donnés par :

O = Vi—1/2 T 5Qi—1/2

2

1
Vi = Vit1/2 — §ai+1/2 (4.40)

1 1

Bi=1- Viv1/2 — §Clz'+1/2 — Vi—1/2 T+ 5%—1/2
La condition de positivité implique pour («) et () que :
1

§|ai+1/2| < Vit1/2 (4.41)

Par ailleurs, pour assurer l'ordre du schéma, a = VAxz /At (ce qui justifie la notation). Ceci
signifie donc que la diffusion numérique (v > 0) est nécessaire pour garantir la
positivité systématique.

Si on revient au schéma upwind, on a directement avec 7; = 0, v = a/2, c’est a dire que
le schéma upwind est celui qui garantit, dans tous les cas de figure, la positivité avec une
diffusion minimale... dont on a vu pourtant qu’elle n’est guere acceptable en pratique!

L’idée des méthodes a flux corrigés (ou des méthodes a limiteurs de flux) est de pouvoir
descendre en dessous de la limite v = a/2 en fonction de la forme de la solution, puisqu’en
pratique la condition de positivité est trop “frileuse”. La stratégie va alors étre d’utiliser le
schéma upwind lorsque 1'on est loin des gradients (son caractere diffusif n’est pas génant
et il garantit la positivité) mais d’utiliser un schéma d’ordre élevé peu diffusif proche des
gradients.

Supposons que 1’on dispose d'un schéma d’ordre élevé moins diffusif que le schéma up-
wind, que l'on écrit sous la forme relativement générale (pour son flux) suivante :

Ci — Ci—1
firip =V(ei +V(0:)(cit1 — ), 0i=— (4.42)
Ci+1 — G
0; est un indicateur du caractere “lisse” de la solution. Pour une solution constante, 6 ~ 1,
proche d’un gradient # < 1 ou > 1.
Par exemple, pour le schéma DST3, la fonction de flux s’écrit :

1
V() = 6[(2 —a)(1—a)+ (1 —a)®0 (4.43)
Dans le cas général, on obtient apres calcul la formule de récurrence suivante :
w(0,)
0;

G = (1 —ag)ef +adicia , ¢ =1+ = ¥(0i-1) (4.44)
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On va alors construire un schéma garantissant la positivité en imposant que 0 < a¢; < 1 :
pour cela, on va remplacer ¥ par le flux limité ¥ avec :

0<WU, <1, 0<U/0<p (4.45)

ou i est un parametre numérique a choisir. Ce choix de limitation des flux correspond au
limiteur de Koren-Sweby (mais d’autres choix sont possibles).
I1 suffit pour cela de choisir :

U, = max(0, min(1, x60, ¥)) (4.46)

Ceci donne comme condition de positivité a(1+4p) < 1 et détermine p en fonction du nombre
de CFL a (localement). En pratique, on prend a = (1 —v)/v.

4.1.8 Extension aux cas 2D et 3D

En pratique, 'advection a lieu dans un cas bi ou tridimensionnel et non pas dans une seule
direction d’espace. Plusieurs approches sont alors possibles pour 'extension des méthodes
précédentes :

— on peut effectuer un splitting directionnel, en résolvant de maniere successive chacune
des directions. Un inconvénient immédiat est alors la perte de monotonie, en particulier
le fait qu’un champ de conditions initiales constant ne reste pas constant dans un champ
de vitesse a divergence nulle.

Des corrections sont alors nécessaires mais on ne précise pas plus ici.

— une alternative est d’effectuer une résolution couplée des directions en agrégeant les
termes liés a chaque direction. Un inconvénient est cependant la sévérisation de la
contrainte CFL. Par exemple pour un cas bidimensionnel (z,y) avec un champ de
vitesse V' = (u,v), on obtient :

('i' + M) At<1 (4.47)

évidemment plus contraignante que la contrainte unidimensionnelle.

4.2 Diffusion

4.2.1 Modele

On considere ici la diffusion d'un traceur, de concentration ¢, sous 'effet d’une diffusion
K
d*c )
o div(KVe) , c¢(z,t=0) = cy(z) (4.48)

avec des conditions aux limites si nécessaire (domaine non borné).
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4.2.2 Algorithme aux différences finies

La discrétisation numérique ne pose pas de probleme numérique spécifique. On utilise
classiquement une discrétisation a 3 points fondée sur un développement de Taylor. Par
exemple, pour la méthode des lignes, la discrétisation spatiale donne :

Cit1 — G Ci — Ci—1
de My T Re TR
dt Ax

avec Ki-‘,—l/? = K([L‘H_l/g).

Cette EDO doit etre résolue. Pour le cas d'une diffusion constante, si on utilise la méthode
d’Euler explicite, on a directement :
n+1 n
" —t K
: At - = A2 (C?Jrl - 26? + C?fl) (45())
L’étude de stabilité de la discrétisation temporelle de cette approximation par différences
finies peut se faire de maniere classique par une analyse de Neumann en calculant les coeffi-
cients d’amplification associés aux modes de Fourier.

En utilisant la condition initiale exp(jkz;) correspondant au mode k de Fourier, on a
apres un calcul aisé :

(4.49)

C

o ANt
C’C? = 1— S sin’(kAe/2) 2 (4.51)
La stabilité est assurée par |rx| < 1 et ce pour tous les modes de Fourier. Autrement dit :
KAt 1
< Z 4.52
Ax? — 2 (452)

que 'on appelle classiquement la condition de Fourier. Cette condition de stabilité n’est
évidemment pas nécessaire pour des résolutions implicites, qui sont en général préférées
pour 'intégration de la diffusion. Des algorithmes d’inversion de matrices doivent alors étre
spécifiés. Du fait de la forme tridiagonale de la matrice, 'inversion se fait aisément (algo-
rithme de Thomas par exemple).

4.3 Exercices

4.3.1 Discrétisation de la diffusion

Ecrire le schéma de discrétisation centré a trois points pour le terme de diffusion, dans
le cas unidimensionnel et pour un coefficient de diffusion constant.
On considere ’équation de diffusion sur 'intervalle [0, 1] divisé en n sous-intervalles. On

1
note h = — le pas de discrétisation et ¢ la solution de 1’équation discrétisée. On impose

n
des conditions de Neumann aux frontieres, approchées par des discrétisations d’ordre 1 :
C1 —0Co Cn — Cp—1
—— =0et ——
h h

¢
discrétisée (spatialement), par le schéma précédent, sous la forme — = kA¢ ou A est une

dt

= 0. On note ¢ = (c1, ¢, ,cn_1). Ecrire I'équation de diffusion

matrice a déterminer.
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4.3.2 Stabilité L2
Jc

. : . : ., . 0Oc :
On considere, en dimension 1, ’équation d’advection linéaire — + V — = 0. La solution

x
discrétisée est notée ¢} ou n est I'indice temporel et j l'indice spatial. On note At le pas
temporel et Az le pas temporel. Le schéma numérique est tel que :

q
At = Z aCiy
k=-p
On s’assure de la stabilité £2(Z) en introduisant ¢"(z) = >
Ecrire ¢ (2) sous la forme R(2)é"(2).
En déduire pourquoi on s’assure de la stabilité en s’assurant que ||c"||o est borné si c? =
eR%=  ceci pour tout z € [—, 7.

e IATZ avec 2 = —1.

JEZ ~J

Discrétiser [’équation d’avection par un schéma centré en espace et un schéma d’FEuler ex-
plicite en temps. Etudier, par la méthode précédente, la stabilité du schéma obtenu.
FEtudier la stabilité du schéma de Lax-Friedrichs :

C;L_i_l + C;L_l At

CT}+1 —_

J 2 2Ax (

n n
Vi, = Vi)

4.3.3 Schéma de Lax-Wendroff

En utilisant la formule de Taylor a lordre 2, retrouver le schéma de Lax-Wendroff pour

l"advection :
ni1l  n VAt VA

c =c )+—2Aa72

g i~ E(Cjﬂ —c (¢jp1 — 2} + ¢fy)

7—1

Quel est lordre du schéma ¢

4.3.4 Variation totale décroissante

Montrer que le schéma “upwind” est a variation totale décroissante (VTD'), c’est-a-dire

que ;Y |t — ] < >l —cp il

ITVD en anglais : “total variation diminishing”.



68

Chapitre 4 - Advection-Diffusion



Bibliographie

[1]

[10]

[11]

[12]
[13]
[14]

[15]

I. Ahmad and M. Berzins. An algorithm for odes from atmospheric dispersion problems.
Applied Numerical Mathematics, 25 :137-149, 1997.

R.C. Aiken. Stiff computation. Oxford University Press, 1985.

J.F. Andrus. Numerical solution of systems of odes separated into subsystems. STAM
J.Numer.Anal, 16(4), 1979.

G.D. Byrne and A.C. Hindmarsh. Stiff ode solvers : a review of current and coming
attractions. J.Comp.Phys., 70 :1-62, 1987.

D. Cariolle. Modele unidimensionnel de la chimie de 1'ozone. Planet Sp. Sc., 31(9),
1983.

D.P. Chock, S.L. Winkler, and Pu Sun. Comparison of stiff chemistry solvers for air
quality modeling. Enwv.Sci. Tech., 28 :1882-1892, 1994.

P.G. Giarlet. Introduction a l’analyse numérique matricielle et a [’optimisation. Masson,
1990.

Curtis and Hirshfelder. Integration of stiff equations. Proceedings of the National Aca-
demy of Science, 38 :235-243, 1952.

D. Dabdub and J.H. Seinfeld. Extrapolation techniques used in the solution of stiff
odes associated with chemical kinetics of air quality models. Atm. Env., 29(3) :403-410,
1995.

S. Elliott, R.P. Turco, and M.Z. Jacobson. Tests on combined projection/forward dif-
ferencing integration for stiff photochemical chemical family systems at long time step.
Computers Chem., 17(1) :91-102, 1993.

M.W. Gery, G.Z. Whitten, J.K. Killus, and M.C. Dodge. A photochemical kinetics
mechanism for urban and regional scale computer modeling. J. Geophys. Research,
94(D10) :12925-12956, 1989.

Gong and Cho. A numerical scheme for the integration of the gas-phase chemical rate
equations in 3d atmospheric models. Atmos. Environ., 27A :2591-2611, 1993.

J. Graf and N. Moussiopoulos. Intercomparison of two models for the dispersion of
chemically reacting pollutants. Beitr. Phys. Atmosph., 64(1) :13-25, Febr. 1991.

E. Hairer and G. Wanner. Solving Ordinary Differential Fquations II. Stiff and
Differential-Algebraic problems. Springer, 1991.

O. Hertel, R. Berkowicz, and J. Christensen. Test of two numerical schemes for use in
atmospheric transport-chemistry models. Atmos. Environ., 27A(16) :2591-2611, 1993.

69



70

[16]
[17]
[18]
[19]

[20]

[20]
[27]

28]

BIBLIOGRAPHIE

E. Hesstvedt, O. Hov, and I.S.A. Isaksen. QQssas in air polution modelling : comparison
of two numerical schemes for oxydant prediction. Int.J. Chem.Kinet., 10 :971-994, 1978.

A.C. Hindmarsh. Scientific computing, chapter ODEPACK : a systematized collection
of ODE solvers, pages 55-74. North Holland, 1983.

W.H. Hundsdorfer. Numerical solution of advection-diffusion-reaction equations. Tech-
nical Report NM-N9603, CWI, 1996.

W.H. Hundsdorfer and J.G. Verwer. A note on splitting errors for advection-reaction
equations. Technical Report NM-R9424, CWI, 1994.

M.Z. Jacobson and R.P. Turco. Smvgear : a sparse-matrix, vectorized gear code for
atmospheric models. Atm. Env., 28(2) :273-284, 1994.

C.T. Kelley. Iterative methods for linear and nonlinear equations. STAM, 1995.

C. Kessler, A. Griesel, and J.G. Verwer. A rosenbrock solver in chemistry-transport
modelling : what about the speed in 3d? In Proceedings EUROTRAC-2 Symposium,
1998.

O. Knoth and R. Wolke. Aiur Pollution Modelling and its applications X, chapter A
comparison of fast chemical kinetic solvers in a simple vertical diffusion model. Plenum
Press, NY, 1994.

L. Lanser and J.G. Verwer. Analysis of operator splitting for advection-diffusion-reaction
problems from air pollution modelling. In Proceedings 2nd Meeting on Numerical me-
thods for differential equations. Coimbra, Portugal, February 1998.

B. Larrouturou. Modélisation mathématique et numérique pour les sciences de
I'ingénieur. Cours Ecole Polytechnique, Majeure Sciences de I'Ingénieur et Calcul Scien-
tifique, 1994.

R.J. LeVeque and H.C. Yee. A study of numerical methods for hyperbolic conservation
laws with stiff source terms. J.Comp.Phys., (86) :187-210, 1990.

G.I. Marchuk. Mathematical models in environmental problems, volume 16. North
Holland, 1986.

J.C. Miellou. Existence globale pour une classe de systemes paraboliques semi-linéaires
modélisant le probleme de la stratosphere : la méthode de la fonction agrégée. CRAS,
299(14) :723, 1984.

M.T. Odman, N. Kumar, and A.G. Russel. A comparison of fast chemical kinetic solvers
for air quality modeling. Atm. Env., 26A(9) :1783-1789, 1992.

J.B. Perot. An analysis of fractional step method. J.C.P., 108 :51-58, 1993.

J.S. Rosenbaum. Conservation properties of numerical integration methods for systems
of odes. J.Comp.Phys., (20) :259-267, 1976.

H.H. Rosenbrock. Some general implicit processes for the numerical solution of diffe-
rential equations. Computer j., 5 :329-330, 1963.

A. Sandu, F.A. Potra, G.R. Carmichael, and V. Damian. Efficient implementation of
fully implicit methods for atmospheric chemical kinetics. J.Comp. Phys., 129 :101-110,
1996.



BIBLIOGRAPHIE 71

[34]

[35]

[36]

[37]

A. Sandu, J.G. Verwer, J.G. Blom, E.J. Spee, and G.R. Carmichael. Benchmarking stiff
odes solvers for atmospheric chemistry problems ii : Rosenbrock solvers. Atm. Enwv.,
31 :3459-3472, 1997.

A. Sandu, J.G. Verwer, M. Van Loon, G. Carmichael, F.A. Potra, D. Dabdub, and J.H.
Seinfeld. Benchmarking stiff odes solvers for atmospheric chemistry problems i : implicit
versus explicit. Atmos. Environ., 31 :3151-3166, 1997.

J.M. Sanz-Serna. The State of the art in numerical analysis, chapter Geometric inte-
gration, pages 121-143. Clarendon Press, Oxford, 1997.

R.D. Saylor and G.D. Ford. On the comparison of numerical methods for the integra-
tion of kinetic equations in atmospheric chemistry and transport models. Atm. Enwv.,
29(19) :2585-2593, 1995.

L.F. Shampine. Solving odes in quasi steady state. In Bienefeld Conference, 1980.
L.F. Shampine. Stiffness and the automatic selection of ode codes. J.of Computational
Physics, 54, 1984.

D. Shyan-Shu Shieh, Y. Chang, and G.R. Carmichael. The evaluation of numerical
techniques for solution of stiff odes arising from chemical kinetics problems. Env. Soft.,
3(1), 1988.

S. Skelboe and Z. Zlatev. Numerical analysis and its applications, chapter Exploiting the
natural partitioning in the numerical solution of ODE systems arising in atmospheric
chemistry, pages 458-465. Springer, 1997.

B.P. Sommeijer, P.J. Van der Houwen, and J.G. Verwer. On the treatment of time-
dependent boundary conditions in splitting methods for parabolic differential equations.
Int.J.for Num. Met. in Eng., 17 :335-346, 1981.

E.J. Spee. Coupling advection and chemical kinetics in a global atmosperic test model.
Technical Report NM R9508, CWI, 1995.

E.J. Spee. Numerical methods in global transport-chemistry models. PhD thesis, Univ.
Amsterdam, 1998.

B. Sportisse. Contribution a la modélisation des écoulements réactifs : réduction des
modeles de cinétique chimique et simulation de la pollution atmosphérique. PhD thesis,
Ecole Polytechnique, April 1999.

B. Sportisse. Assimilation de données et modélisation inverse. Cours ENSTA, 2005.
B. Sportisse. Modélisation de la pollution atmosphérique. Cours ENPC, 2005.

G. Strang. On the construction and comparison of difference schemes. SIAM
J.Numer.Anal., 5 :506-517, 1968.

Pu Sun, D. Chock, and S.L.. Winkler. An implicit-explicit hybrid solver for a system of
stiff kinetic equations. J. Comp. Physics, 115 :515, 1994.

M. Van Loon. Numerical methods in smog prediction. PhD thesis, Univ. Amsterdam,
1996.

J.G. Verwer. Gauss-seidel iteration for stiff odes from chemical kinetics. SIAM
J.Sci.Comput., 15 :1243-1250, 1994.



72

[52]

BIBLIOGRAPHIE

J.G. Verwer and J. Blom. On the coupled solution of diffusion and chemistry in air
pollution models. In Akademie Verlag, editor, Proceedings of ICIAM 95, ZAMM, issue
4 : applied sciences, pages 454-457, 1996.

J.G. Verwer, J. Blom, M. Van Loon, and E.J. Spee. A comparison of stiff odes solvers
for atmospheric chemistry problems. Atmos. Environ., 30 :49-58, 1996.

J.G. Verwer, J.G. Blom, and W.H. Hundsdorfer. An implicit-explicit approach for
atmospheric transport-chemistry problems. Appl. Num. Math., 20 :191-209, 1996.

J.G. Verwer and H.B. de Vries. Global extrapolation and first-order splitting method.
SIAM J. Sci.Stat. Comput., 6(3), 1985.

J.G. Verwer, W.H. Hundsdorfer, and J.G. Blom. Numerical time integration for air
pollution models. In Proceedings of the Conference APMS’98. ENPC-INRIA, October
26-29 1998.

J.G. Verwer and D. Simpson. Explicit methods for stiff odes from atmospheric chemistry.
Appl. Num. Math., 18 :413-430, 1995.

J.G. Verwer and M. Van Loon. An evaluation of explicit pseudo-steady state approxima-
tion schemes for stiff ode systems from chemical kinetics. J.Comp.Phys., 113 :347-352,
1994.

J.H. Verwer, E.J. Spee, J.G. Blom, and W.H. Hundsdorfer. A second order rosen-
brock method applied to photochemical dispersion problem. SIAM J. Sc. Comput.,
20(4) :1456-1480, 1999.

A.L. Vol'pert and S.I. Hudjaev. Analysis in classes of discontinuous functions and equa-
tions of mathematical physics., chapter 12. Martinus Nijhoff, 1985.

D.S. Watkins and R.W. Hansonsmith. The numerical solution of separably stiff systems
by precise partitioning. ACM Trans. on math. soft., 9(3), 1983.

N.N. Yanenko. The method of fractional steps. New-York, 1971.

T.R. Young and J.P. Boris. A numerical technique for solving stiff ode associated with
the chemical kinetics of reaction flow problems. J.Phys.Chem., 81 :2424, 1977.



