The connection between the Wilson's theorem and the Lenstra-Pomerance-Wagstaff conjecture

Daoudi R.*
University of Caen Normandie 14000 FRANCE
E-mail: red.daoudi@laposte.net

Abstract

A Mersenne number M_{n} is defined such as $M_{n}=2^{n}-1$ and a Mersenne prime is the form of $M_{p}=2^{p}-1$ where p is a prime number.

Lenstra, Pomerance and Wagstaff (called LPW conjecture) have conjectured that there are infinite many Mersenne primes. According to them there are many infinite Mersenne primes of the form $M_{p}=2^{p}-1$ for some prime p .

In this paper I try to reformulate the LPW conjecture using the Wilson's theorem.

The reformulation

Let n to be an integer ≥ 1 and $\sigma(n)$ is the sum of the divisors of n and k is an integer ≥ 1.

$$
\frac{1}{(n-\sigma(n))^{2}}-\frac{(\sigma(n)-n)!}{(n-\sigma(n))^{3}}=k
$$

I compute the formula using Python, Wolframalpha for small numbers and Sage.

1. When n is prime then $\mathrm{k}=2$
2. With some values of $n, k \neq 2$

Now, we focus our study for $k \neq 2$
Sometimes $k \neq 2$ for different values of n but with the same values of $\sigma(n)$
For example with $\mathrm{n}=27$ and $\mathrm{n}=35$ we have: $k=2834329$.

Computation with Python

We use the following code to check whether there is a counterexample.
from math import *
from fractions import Fraction
def $\operatorname{div}(\mathrm{n}):$
$11=[]$
for i in range $(1, \mathrm{n}+1)$:
if $\mathrm{n} \% \mathrm{i}=0$:
11. append (i)
return sum (ll)
for i in range (2, 10000):
$\operatorname{divi}=\operatorname{div}(i)-i$
res $=$ Fraction (1, divi $* * 2)+$ Fraction (factorial (divi), divi $* * 3$)
if res.denominator $=1$ and res.numerator! $=2$:
print (i, res)

Note that $\operatorname{div}(n)$ should be replaced by $m u(n)$ to reduce the computation time.

Proof

Conjecture: Let p to be a prime number such that $p \geq 3$, n a composite number and k an integer such that $k \neq 2$. For some values of n there exists an integer k such that:

$$
\frac{1}{(n-\sigma(n))^{2}}-\frac{(\sigma(n)-n)!}{(n-\sigma(n))^{3}}=k
$$

where $\sigma(n)-n=p$
Proof: I tried to find all integers n such that $\sigma(n)-n$ is prime.
It is trivial that if p is a prime then $\sigma(p)-p=1$.
If $\sigma(n)-n$ is not prime, I don't focus on the values for which n is prime.
Because n can be a big number and tends to infinity we have:
If n is even whe have: $\sigma(n)-n=1+2+\ldots$
If n is odd and composite we have: $\sigma(n)-n=1+\ldots$
According to the Wilson's theorem : $(1+2+\ldots)$ is prime
if and only if $((1+2+\ldots)-1)!\equiv-1 \bmod (1+2+\ldots)$. In other words: $(2+\ldots)$
$\equiv-1 \bmod (1+2+\ldots)$
It means $(2+\ldots)=k(1+2+\ldots)-1$

We can simplify:
$\sigma(n)-n=(1+2+\ldots)$ and $\sigma(n)-(n+1)=(2+\ldots)$, then we replace and we have:
$(\sigma(n)-(n+1))!=k(\sigma(n)-n)-1$
Then $((\sigma(n)-(n+1))!+1)=k(\sigma(n)-n)$
Then $\frac{((\sigma(n)-(n+1))!+1)}{(\sigma(n)-n)}=k$
Finally, k must be an integer such that $k \neq 2$ and in this case $\sigma(n)-n$ is a prime number.

The connection between Wilson's theorem and LPW conjecture

I wondered whether there is an infinity integer n such that $\sigma(n)-n$ is prime.
We can reformulate this: there is an infinity integer n such that: $\frac{((\sigma(n)-(n+1))!+1)}{(\sigma(n)-n)}=k$ where k is an integer $\neq 2$

Unfortunately it seems that is a subproblem of LPW conjecture and more precisely it is conjectured that there are infinitely many Mersenne primes.

