Soit la fonction
$$\mathbf{T_{3^m}}$$
 de \mathbb{N}^* dans \mathbb{N}^* définit par : $\mathbf{T_{3^m}}(N) = \begin{cases} \frac{N}{2}, & \text{si } N \text{ est pair } \\ 3 \times N + 3^m, & \text{si } N \text{ est impair } \end{cases}$

En appliquant cette fonction successivement au résultat précédant, on obtient la suite $S\{T_{3^m}(N)\} = \{N, N_1, N_2, \dots N_k, \dots\}$

Une suite de Syracuse multipliée par 3^m sera dite homothétique de la suite de Syracuse dans le rapport 3^m .

On se propose de montrer que $\forall N \in \mathbb{N}^*$ la suite $\mathbf{S}\{\mathbf{T_{3^m}}(\mathbf{N})\}$ atteindra une suite homothétique d'une suite de Syracuse dans le rapport 3^m après un nombre fini d'itérations.

 $\forall N \in \mathbb{N}^*, \exists \ \mathbf{i} \in [0, m] \ tel \ que \ N \equiv 0 \pmod{3}^i$ Une ou plusieurs valeurs de \mathbf{i} existent. Prenons pour \mathbf{i} la plus grande. On a donc $N = 3^i$.

- 1. i = m: N est déjà dans une suite homothétique d'une suite de Syracuse dans le rapport 3^m
- 2. i < m: Montrons comment les itrations vont modifier i: Deux cas se présentent suivant la parité de N.
 - (a) N est pair, on devra donc le diviser par 2. on a $N \equiv 0 \pmod{3}^i \ donc \frac{N}{2} \equiv 0 \ (\text{mod } 3)^i \ et \ i \ ne \ changera \ pas.$
 - (b) N est impair, on devra donc le multiplier par 3 et ajouter 3^m . $N = k * 3^m + 3^i$, $N \to 3N + 3^m = 3(k * 3^m + 3^i) + 3^m$ $= (3k + 1)3^m + 3 * 3^i \equiv 0 \pmod{3^{i+1}}$. i augmente de 1 dans cette itération.

En divisant N par 2 et en répétant l'opération tant que possible, on obtiendra un nombre impair après un nombre fini d'itérations. L'itération suivante augmentera i de 1 et ce jusqu'à ce que i = m.

Ainsi on aura atteint une suite homothétique d'une suite de Syracuse dans le rapport 3^m.