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Chapter A: What is an L-function?

The Riemann Hypothesis is an assertion about the zeros of the Riemann ζ-function.
Generalizations of the ζ-function have been discovered, for which the analogue of the Rie-
mann Hypothesis is also conjectured.

These generalizations of the ζ-function are known as “zeta-functions” or “L-functions.”
In this section we describe attempts to determine the collection of functions that deserve to
be called L-functions.

A.1 Terminology and basic properties

For a more detailed discussion, see the articles on the Selberg class11 and on automor-
phic L-functions12.

A.1.a Functional equation of an L-function. The Riemann ζ-function4 has functional
equation

ξ(s) = π−
s
2Γ(

s

2
)ζ(s)

= ξ(1− s). (1)

Dirichlet L-functions9 satisfy the functional equation

ξ(s, χ) = π−
s
2Γ(

s

2
+ a)L(s, χ)

= ∗ ∗ ξ(1− s, χ), (2)

where a = 0 if χ is even and a = 1 if χ is odd, and ∗ ∗ ∗ ∗ ∗.
The Dedekind zeta function66 of a number field K satisfies the functional equation

ξK(s) =

(

√

|dK |
2r2πn/2

)s

Γ(s/2)r1Γ(s)r2ζK(s))

= ξK(1− s). (3)

Here r1 and 2r2 are the number of real and complex conjugate embeddings K ⊂ C, dK is
the discriminant, and n = [K,Q] is the degree of K/Q.

L-functions associated with a newform13 f ∈ Sk(Γ0(N) satisfy the functional equation

ξ(s, f) =
( π

N

)−s

Γ

(

s+
k − 1

2

)

L(s, f)

= εξ(1− s, f), (4)

where a = 0 if χ is even and a = 1 if χ is odd.

11page 11, The Selberg class
12page 28, Iwaniec’ approach
4page 7, The Riemann zeta function
9page 8, Dirichlet L-functions
66page 8, Dedekind zeta functions
13page 8, Dirichlet series associated with holomorphic cusp forms
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L-functions associated with a Maass newform14 with eigenvalue λ = 1
4
+ R2 on Γ0(N)

satisfy the functional equation

ξ(s, f) =

(

N

π

)s

Γ

(

s+ iR + a

2

)

Γ

(

s− iR + a

2

)

L(s, f)

= εξ(1− s, f), (5)

where a = 0 if f is even and a = 1 if f is odd.

GL(r) L-functions44 satisfy functional equations of the form

Φ(s) :=

(

N

πr

)s/2 r
∏

j=1

Γ

(

s+ rj
2

)

F (s) = εΦ(1− s).

[This section needs a bit of work]

A.1.b Euler product. An Euler product is a representation of an L-function as a convergent
infinite product over the primes p, where each factor (called the “local factor at p”) is a
Dirichlet series supported only at the powers of p.

The Riemann ζ-function4 has Euler product

ζ(s) =
∏

p

(

1− p−s
)−1

.

A Dirichlet L-function9 has Euler product

L(s, χ) =
∏

p

(

1− χ(p)p−s
)−1

.

The Dedekind zeta function66 of a number field K has Euler product

ζK(s) =
∏

p

(

1−Np−s
)−1

,

where the product is over the prime ideals of OK .

An L-functions associated with a newform13 f ∈ Sk(Γ0(N)) or a Maass newform14 f(z)
on Γ0(N) has Euler product

L(s, f) =
∏

p|N

(

1− app−s
)−1
∏

p-N

(

1− app−s + χ(p)p−2s+1
)−1

.

GL(r) L-functions44 have Euler products where almost all of the local factors are
(reciprocals of) polynomials in p−s of degree r.

14page 11, Dirichlet series associated with Maass forms
44page 11, Higher rank L-functions
4page 7, The Riemann zeta function
9page 8, Dirichlet L-functions
66page 8, Dedekind zeta functions
13page 8, Dirichlet series associated with holomorphic cusp forms
14page 11, Dirichlet series associated with Maass forms
44page 11, Higher rank L-functions
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A.1.c ξ and Z functions. The functional equation69 can be written in a form which is
more symmetric:

ξ(s) :=
1

2
s(s− 1)π

1
2
sΓ(s/2)ζ(s) = ξ(1− s).

Here ξ(s) is known as the Riemann ξ-function. It is an entire function of order 1, and all of
its zeros lie in the critical strip.

The ξ-function associated to a general L-function is similar, except that the factor
1
2
s(s− 1) is omitted, since its only purpose was to cancel the pole at s = 1.

The Ξ function just involves a change of variables: Ξ(z) = ξ( 1
2
+ iz). The functional

equation now asserts that Ξ(z) = Ξ(−z).
The Hardy Z-function is defined as follows. Let

ϑ = ϑ(t) =
1

2
arg(χ(

1

2
+ it)),

and define

Z(t) = eiϑζ(
1

2
+ it) = χ(

1

2
+ it)−

1
2 ζ(

1

2
+ it).

Then Z(t) is real for real t, and |Z(t)| = |ζ( 1
2
+ it).

Plots of Z(t) are a nice way to picture the ζ-function on the critical line. Z(t) is called
RiemannSiegelZ[t] in Mathematica.

A.1.d Critical line and critical strip. The critical line is the line of symmetry in the
functional equation69 of the L-function. In the usual normalization the functional equation
associates s to 1− s, so the critical line is σ = 1

2
.

In the usual normalization the Dirichlet series and the Euler product converge abso-
lutely for The functional equation maps σ > 1 to σ < 0. The remaining region, 0 < σ < 1
is known as the critical strip.

By the Euler product there are no zeros in σ > 1, and by the functional equation there
are only trivial zeros in σ < 0. So all of the nontrivial zeros are in the critical strip, and the
Riemann Hypothesis asserts that the nontrivial zeros are actually on the critical line.

A.1.e Trivial zeros. The trivial zeros of the ζ-function are at s = −2, −4, −6, ....
The trivial zeros correspond to the poles of the associated Γ-factor.

A.1.f Zero counting functions. Below we present the standard notation for the functions
which count zeros of the zeta-function.

Zeros of the zeta-function in the critical strip are denoted

ρ = β + iγ.

It is common to list the zeros with γ > 0 in order of increasing imaginary part as ρ1 = β1+iγ1,
ρ2 = β2 + iγ2,.... Here zeros are repeated according to their multiplicity.

We have the zero counting function

N(T ) = #{ρ = β + iγ : 0 < γ ≤ T}.
69page 4, Functional equation of an L-function
69page 4, Functional equation of an L-function
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In other words, N(T ) counts the number of zeros in the critical strip, up to height T . By
the functional equation and the argument principle,

N(T ) =
1

2π
T log

(

T

2πe

)

+
7

8
+ S(T ) +O(1/T ),

where

S(T ) =
1

π
arg ζ

(

1

2
+ it

)

,

with the argument obtained by continuous variation along the straight lines from 2 to 2+ iT
to 1

2
+iT . Von Mangoldt proved that S(T ) = O(log T ), so we have a fairly precise estimate of

the number of zeros of the zeta-function with height less than T . Note that Von Mangoldt’s
estimate implies that a zero at height T has multiplicity O(log T ). That is still the best
known result on the multiplicity of zeros. It is widely believed that all of the zeros are
simple.

A number of related zero counting functions have been introduced. The two most
common ones are:

N0(T ) = #{ρ =
1

2
+ iγ : 0 < γ ≤ T},

which counts zeros on the critical line up to height T . The Riemann Hypothesis is equivalent
to the assertion N(T ) = N0(T ) for all T . Selberg proved that N0(T ) À N(T ). At present
the best result of this kind is due to Conrey [90g:11120], who proved that

N0(T ) ≥ 0.40219N(T )

if T is sufficiently large.

And,
N(σ, T ) = #{ρ = β + iγ : β > σ and 0 < γ ≤ T},

which counts the number of zeros in the critical strip up to height T , to the right of the
σ-line. Riemann Hypothesis is equivalent to the assertion N( 1

2
, T ) = 0 for all T .

For more information on N(σ, T ), see the article on the density hypothesis25.

A.2 Arithmetic L-functions

Loosely speaking, arithmetic L-functions are those Dirichlet series with appropriate
functional equations and Euler products which should satisfy a Riemann Hypothesis. Sel-
berg has given specific requirements11 which seem likely to make this definition precise.
Arithmetic L-functions arise in many situations: from the representation theory of groups
associated with number fields, from automorphic forms on arithmetic groups acting on sym-
metric spaces, and from the harmonic analysis on these spaces.

A.2.a The Riemann zeta function. The Riemann zeta-function is defined by

ζ(s) =
∞
∑

n=1

1

ns
=
∏

p

(1− p−s)−1,

where s = σ + it, the product is over the primes, and the series and product converge
absolutely for σ > 1.

25page 16, The Density Hypothesis
11page 11, The Selberg class
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The use of s = σ + it as a complex variable in the theory of the Riemann ζ-function
has been standard since Riemann’s original paper.

A.2.b Dirichlet L-functions. Dirichlet L-functions are Dirichlet series of the form

L(s, χ) =
∞
∑

n=1

χ(n)

ns

where χ is a primitive Dirichlet character to a modulus q. Equivalently, χ is a function
from the natural numbers to the complex numbers, which is periodic with period q (i.e.
χ(n + q) = χ(n) for all n ≥ 1), completely multiplicative (i.e. χ(mn) = χ(m)χ(n) for all
natural numbers m and n), which vanishes at natural numbers which have a factor > 1
in common with q and which do not satisfy χ(m + q1) = χ(m) for all numbers m, q1 with
q1 < q and (m, q1) = 1. The last condition gives the primitivity. Also, we do not consider
the function which is identically 0 to be a character.

If the modulus q = 1 then χ(n) = 1 for all n and L(s, χ) = ζ(s). If q > 1, then the
series converges for all s with σ > 0 and converges absolutely for σ > 0.

L(s, χ) has an Euler product

L(s, χ) =
∏

p

(

1− χ)p

ps

)−1

.

A.2.c Dedekind zeta functions. Let K be a number field (ie, a finite extension of the
rationals Q), with ring of integers OK . The Dedekind zeta function of K is given by

ζK(s) =
∑

a

(Na)−s,

for σ > 1, where the sum is over all integral ideals of OK , and Na is the norm of a.

A.2.d GL(2) L-functions. We call GL(2) L-functions those Dirichlet series with functional
equations and Euler products each of whose factors is the reciprocal of a degree two poly-
nomial in p−s. These are associated with (i.e. their coefficients are the Fourier coefficients)
of cusp forms on congruence subgroups of SL(2, Z) which are eigenfunctions of the Hecke
operators and of the Atkin-Lehner operators (newforms).

A.2.d.i Dirichlet series associated with holomorphic cusp forms. Level one modular forms.
A cusp form of weight k for the full modular group is a holomorphic function f on the upper
half-plane which satisfies

f

(

az + b

cz + d

)

= (cz + d)kf(z)

for all integers a, b, c, d with ad − bc = 1 and also has the property that limy→∞ f(iy) = 0.
Cusp forms for the whole modular group exist only for even integers k = 12 and k ≥ 16. The
cusp forms of a given weight k of this form make a complex vector space Sk of dimension
[k/12] if k 6= 2 mod 12 and of dimension [k/12]− 1 if k = 2 mod 12. Each such vector space
has a special basisHk of Hecke eigenforms which consist of functions f(z) =

∑∞
n=1 af (n)e(nz)

for which

af (m)af (n) =
∑

d|(m,n)

dk−1af (mn/d
2).
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The Fourier coefficients af (n) are real algebraic integers of degree equal to the dimension of
the vector space = #Hk. Thus, when k = 12, 16, 18, 20, 22, 26 the spaces are one dimensional
and the coefficients are ordinary integers. The L-function associated with a Hecke form f of
weight k is given by

Lf (s) =
∞
∑

n=1

af (n)/n
(k−1)/2ns =

∏

p

(

1− af (p)/p
(k−1)/2

ps
+

1

p2s

)−1

.

By Deligne’s theorem af (p)/p
(k−1)/2 = 2 cos θf (p) for a real θf (p). It is conjectured (Sato-

Tate) that for each f the {θf (p) : p prime} is uniformly distributed on [0, π) with respect to

the measure 2
π
sin2 θdθ. We write cos θf (p) = αf (p) + αf (p) where αf (p) = eiθf (p); then

Lf (s) =
∏

p

(

1− αf (p)

ps

)−1
(

1− αf (p)

ps

)−1

.

The functional equation satisfied by Lf (s) is

ξf (s) = (2π)−sΓ(s+ (k − 1)/2)Lf (s) = (−1)k/2ξf (1− s).

Higher level forms. Let Γ0(q) denote the group of matrices

(

a b
c d

)

with integers

a, b, c, d satisfying ad− bc = 1 and q | c. This group is called the Hecke congruence group. A
function f holomorphic on the upper half plane satisfying

f

(

az + b

cz + d

)

= (cz + d)kf(z)

for all matrices in Γ0(q) and limy→∞ f(iy) = 0 is called a cusp form for Γ0(q); the space of
these is a finite dimensional vector space Sk(q). The space Sk above is the same as Sk(1).
Again, these spaces are empty unless k is an even integer. If k is an even integer, then

dimSk(q) =
(k − 1)

12
ν(q) +

([

k

4

]

− k − 1

4

)

ν2(q) +

([

k

3

]

− k − 1

3

)

ν3(q)−
ν∞(q)

2

where ν(q) is the index of the subgroup Γ0(q) in the full modular group Γ0(1):

ν(q) = q
∏

p|q

(

1 +
1

p

)

;

ν∞(q) is the number of cusps of Γ0(q):

ν∞(q) =
∑

d|q

φ((d, q/d));

ν2(q) is the number of inequivalent elliptic points of order 2:

ν2(q) =

{

0 if 4 | q
∏

p|q(1 + χ−4(p)) otherwise

and ν3(q) is the number of inequivalent elliptic points of order 3:

ν3(q) =

{

0 if 9 | q
∏

p|q(1 + χ−3(p)) otherwise.
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It is clear from this formula that the dimension of Sk(q) grows approximately linearly
with q and k.

For the spaces Sk(q) the issue of primitive forms and imprimitive forms arise, much
as the situation with characters. In fact, one should think of the Fourier coefficients of
cusp forms as being a generalization of characters. They are not periodic, but they act as
harmonic detectors, much as characters do, through their orthogonality relations (below).
Imprimitive cusp forms arise in two ways. Firstly , if f(z) ∈ Sk(q), then f(z) ∈ Sk(dq) for
any integer d > 1. Secondly, if f(z) ∈ Sk(q), then f(dz) ∈ Sk(Γ0(dq)) for any d > 1. The
dimension of the subspace of primitive forms is given by

dimSnewk (q) =
∑

d|q

µ2(d) dimSk(q/d)

where µ2(n) is the multiplicative function defined for prime powers by µ2(p
e) = −2 if e = 1,

= 1 if e = 2 , and = 0 if e > 2. The subspace of newforms has a Hecke basis Hk(q) consisting
of primitive forms, or newforms, or Hecke forms. These can be identified as those f which
have a Fourier series

f(z) =
∞
∑

n=1

af (n)e(nz)

where the af (n) have the property that the associated L-function has an Euler product

Lf (s) =
∞
∑

n=1

af (n)/n
(k−1)/2

ns
=
∏

p-q

(

1− af (p)/p
(k−1)/2

ps
+

1

p2s

)−1
∏

p|q

(

1− af (p)/p
(k−1)/2

ps

)−1

.

The functional equation satisfied by Lf (s) is

ξf (s) = (2π/
√
q)−sΓ(s+ (k − 1)/2)Lf (s) = ±(−1)k/2ξf (1− s).

A.2.d.i.A Examples. See the website1 for many specific examples.

Ramanujan’s tau-function defined implicitly by

x
∞
∏

n=1

(1− xn)24 =
∞
∑

n=1

τ(n)xn

also yields the simplest cusp form. The associated Fourier series ∆(z) :=
∑∞

n=1 τ(n) exp(2πinz)
satisfies

∆

(

az + b

cz + d

)

= (cz + d)12∆(z)

for all integers a, b, c, d with ad− bc = 1 which means that it is a cusp form of weight 12 for
the full modular group.

The unique cusp forms of weights 16, 18, 20, 22, and 26 for the full modular group can
be given explicitly in terms of (the Eisenstein series)

E4(z) = 1 + 240
∞
∑

n=1

σ3(n)e(nz)

1http://www.math.okstate.edu/∼loriw/degree2/degree2hm/degree2hm.html
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and

E6(z) = 1− 504
∞
∑

n=1

σ5(n)e(nz)

where σr(n) is the sum of the rth powers of the positive divisors of n:

σr(n) =
∑

d|n

dr.

Then, ∆(z)E4(z) gives the unique Hecke form of weight 16; ∆(z)E6(z) gives the unique
Hecke form of weight 18; ∆(z)E4(z)

2 is the Hecke form of weight 20; ∆(z)E4(z)E6(z) is the
Hecke form of weight 22; and ∆(z)E4(z)

2E6(z) is the Hecke form of weight 26. The two
Hecke forms of weight 24 are given by

∆(z)E4(z)
3 + x∆(z)2

where x = −156± 12
√
144169.

An example is the L-function associated to an elliptic curve E : y2 = x3 + Ax + B
where A,B are integers. The associated L-function, called the Hasse-Weil L-function, is

LE(s) =
∞
∑

n=1

a(n)/n1/2

ns
=
∏

p-N

(

1− a(p)/p1/2

ps
+

1

p2s

)−1
∏

p|N

(

1− a(p)/p1/2

ps

)−1

where N is the conductor of the curve. The coefficients an are constructed easily from ap for
prime p; in turn the ap are given by ap = p−Np where Np is the number of solutions of E
when considered modulo p. The work of Wiles and others proved that these L-functions are
associated to modular forms of weight 2.

A.2.d.j Dirichlet series associated with Maass forms.

A.2.e Higher rank L-functions. A.3 The Selberg class

Selberg [94f:11085] has given an elegant a set of axioms which presumably describes
exactly the set of arithmetic L-functions. He also made two deep conjectures82 about these
L-functions which have far reaching consequences.

The collection of Dirichlet series satisfying Selberg’s axioms is called “The Selberg
Class.” This set has many nice properties. For example, it is closed under products. The
elements which cannot be written as a nontrivial product are called “primitive,” and every
member can be factored uniquely into a product of primitive elements.

In some cases it is useful to slightly relax the axioms so that the set is closed under
the operation

F (s) 7→ F (s+ iy)

for real y.

Some of the important problems concerning the Selberg Class are:

1. Show that the members of the Selberg Class are arithmetic L-functions.

2. Prove a prime number theorem26 for members of the Selberg class.

82page 12, Selberg Conjectures
26page 16, Zeros on the σ = 1 line
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See Perelli and Kaczorowski [MR 2001g:11141], Conrey and Ghosh [95f:11064] and
Chapter 7 of Murty and Murty [98h:11106] for more details and some additional consequences
of Selberg’s conjectures.

A.3.a Axiom 1: Dirichlet series. For <(s) > 1,

F (s) =
∞
∑

n=1

an
ns
.

A.3.b Axiom 2: Analytic Continuation. F (s) extends to a meromorphic function such
that, for some integer m, (s− 1)mF (s) is an entire function of finite order.

A.3.c Axiom 3: Functional Equation. There exist numbers Q > 0, αj > 0, and <(rj) ≥
0, such that

Φ(s) := Qs

d
∏

j=1

Γ(αj + rj)F (s)

satisfies

Φ(s) = εΦ(1− s).
Here |ε| = 1 and Φ(z) = Φ(z).

A.3.d Axiom 4: Euler Product.

F (s) =
∏

p

Fp(s),

where the product is over the rational primes. Here

Fp(s) = exp

(

∞
∑

k=1

bpk

pks

)

with bn ¿ nθ for some θ < 1
2
.

Note that this implies a1 = 1, so F (s) = 1 is the only constant function in the Selberg
class.

A.3.e Axiom 5: Ramanujan Hypothesis. We have

an ¿ nε

for all ε > 0.

A.3.f Selberg Conjectures. Selberg has made two conjectures concerning the Dirichlet
series in the Selberg class S:
Conjecture A. For each F ∈ S there exists an integer nF such that

∑

p≤X

|ap(F )|2
p

= nF log log x+O(1).

Conjecture A follows from
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Conjecture B. If F ∈ S is primitive, then nF = 1, and if F, F ′ ∈ S are distinct and
primitive, then

∑

p≤X

ap(F )ap(F ′

p
= O(1).

The above sums are over p prime.

Conjecture B can be interpreted as saying that the primitive functions form an or-
thonormal system. This conjecture is very deep. It implies, among other things, Artin’s
conjecture on the holomorphy of non-abelian L-functions [98h:11106], and that the factor-
ization of elements into primitives is unique [95f:11064].

If you extend the Selberg Class to include G(s) = F (s+ iy) for F ∈ S and y real, then
Conjecture B with F ′(s) = ζ(s− iy) is equivalent to a prime number theorem26 for F (s).

A.4 Analogues of zeta-functions

A.4.a Dynamical zeta-functions. For several decades now there has been interest amongst
physicists and mathematicians to study the statistics of the eigenvalue spectra of physical
systems - especially those with a classical counterpart which displays chaotic behaviour. One
particular goal is to try to detect in the statistical distribution of a set of energy eigenvalues
an indication of whether the corresponding classical system behaves chaoticly or integrably.
The answer was suggested by Berry and Tabor in 1977, and examined in depth by Bohigas,
Giannoni and Schmit [85f:58034], and reveals that while classically integrable (non-chaotic)
systems have a spectrum of uncorrelated eigenvalues, the spectra of classically chaotic sys-
tems show the characteristic correlations seen in the spectra of ensembles of random matrices.
In particular, the semiclassical spectra of physical systems which are not symmetric under
time-reversal have the same local statistics (those of the ensemble of unitary matrices, U(N),
with Haar measure) as the zeros high on the critical line of the Riemann zeta function and
other L-functions.

Thus for a given physical system which possesses the correct symmetries, we can con-
struct a zeta function which will have zeros correlated on a local scale like those of the
Riemann zeta function. For a system with a Hamiltonian operator H and a set of eigenval-
ues En, satisfying

Hψn(r) = Enψn(r),

with wavefunctions ψn, a natural function to study is the spectral determinant

∆(E) ≡ det[A(E,H)(E −H)] =
∏

j

[A(E,Ej)(E − Ej)],

where A has no real zeros and is included so as to make the product converge.

A semiclassical expression for the spectral determinant can be given using only classical
attributes of the system in question. Following Berry and Keating [92m:81053], we can write

∆(E) ∼ B(E) exp(−iπN(E))
∏

p

exp



−
∞
∑

k=1

exp(ikSp/~)

k
√

| det(Mk
p − 1)|



 .

26page 16, Zeros on the σ = 1 line
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Here B(E) is a real function with no zeros and

dN(E)

dE
= d(E),

the mean density of eigenvalues. The sum is over the periodic orbits of the classical system,
Sp is the action of the orbit p, and Mp is the monodromy matrix which describes flow
linearized around the orbit.

We can now define the dynamical zeta function

Z(E) =
∏

p

exp



−
∞
∑

k=1

exp(ikSp/~)

k
√

| det(Mk
p − 1)|



 .

Since B(E) has no zeros, the zeros of Z(E) are the eigenvalues of the system under investi-
gation.

A.4.b Spectral zeta functions.

Chapter B: Riemann Hypotheses

B.1 The Riemann Hypothesis and its generalizations

The Riemann Hypothesis for L(s) is the assertion that the nontrivial zeros64 of L(s) lie
on the critical line64. For historical reasons there are names given to the Riemann hypothesis
for various sets of L-functions. For example, the Generalized Riemann Hypothesis (GRH)17

is the Riemann Hypothesis for all Dirichlet L-functions9. More examples collected below.

In certain applications there is a fundamental distinction between nontrivial zeros on
the real axis and nontrivial zeros with a positive imaginary part. Here we use the adjective
modified to indicate a Riemann Hypothesis except for the possibility of nontrivial zeros on the
real axis. Thus, the Modified Generalized Riemann Hypothesis (MGRH)17 is the assertion
that all nontrivial zeros of Dirichlet L-functions9 lie either on the critical line or on the real
axis.

Nontrivial zeros which are very close to the point s = 1 are called Landau-Siegel zeros36.

B.1.a The Riemann Hypothesis. The Riemann Hypothesis is the assertion that the
nontrivial zeros64 of the Riemann zeta-function4 lie on the critical line64 σ = 1

2
.

64page 4, Terminology and basic properties
64page 4, Terminology and basic properties
17page 14, The Generalized Riemann Hypothesis
9page 8, Dirichlet L-functions
17page 14, The Generalized Riemann Hypothesis
9page 8, Dirichlet L-functions
36page 17, Landau-Siegel zeros
64page 4, Terminology and basic properties
4page 7, The Riemann zeta function
64page 4, Terminology and basic properties
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B.1.b The Generalized Riemann Hypothesis. The Generalized Riemann Hypothe-
sis(GRH) is the assertion that the Riemann Hypothesis16 is true, and in addition the non-
trivial zeros64 of all Dirichlet L-functions9 lie on the critical line64 σ = 1

2
.

Equivalently, GRH asserts that the nontrivial zeros of all degree 111 L-functions lie on
the critical line.

The Modified Generalized Riemann Hypothesis(MGRH) is the assertion that the Rie-
mann Hypothesis16 is true, and in addition the nontrivial zeros64 of all Dirichlet L-functions9

lie either on the critical line64 σ = 1
2
or on the real axis.

B.1.c The Extended Riemann Hypothesis. The Extended Riemann Hypothesis(ERH)
is the assertion that the nontrivial zeros of the Dedekind zeta function66 of any algebraic
number field lie on the critical line.

Note that ERH includes RH because the Riemann zeta function is the Dedekind zeta
function of the rationals.

[[more needs to be said here and also in the section where the Dedekind zeta function
is defined]]

B.1.d The Grand Riemann Hypothesis. The Grand Riemann Hypothesis is the asser-
tion that the nontrivial zeros of all automorphic L-functions12 lie on the critical line.

The Modified Grand Riemann Hypothesis is the assertion that the nontrivial zeros of
all automorphic L-functions12 lie on the critical line or the real line.

It is widely believed that all global L-functions53 are automorphic L-functions12. Pre-
sumably this also coincides with the Selberg class11.

B.2 Other statements about the zeros of L-functions

The Riemann Hypothesis55 is the strongest possible statement about the horizontal
distribution of the nontrivial zeros64 of an L-function. In this section we collect together
various weaker assertions. Each of these statements arises in a natural way, usually due to
a relationship with the prime numbers.

16page 14, The Riemann Hypothesis
64page 4, Terminology and basic properties
9page 8, Dirichlet L-functions
64page 4, Terminology and basic properties
11page 11, The Selberg class
16page 14, The Riemann Hypothesis
64page 4, Terminology and basic properties
9page 8, Dirichlet L-functions
64page 4, Terminology and basic properties
66page 8, Dedekind zeta functions
12page 28, Iwaniec’ approach
12page 28, Iwaniec’ approach
53page 7, Arithmetic L-functions
12page 28, Iwaniec’ approach
11page 11, The Selberg class
55page 14, Riemann Hypotheses
64page 4, Terminology and basic properties



16

Examples include zeros on26 or near25 the σ = 1 line, zeros on35 or near25 the critical
line, and zeros on the real axis36.

B.2.a Quasi Riemann Hypothesis. The term “Quasi Riemann Hypothesis” for L(s) is
sometimes used to mean that L(s) has no zeros in a half-plane σ > σ0, for some σ0 < 1.

B.2.b 100 percent hypothesis. The 100% Hypothesis for L(s) asserts that

N0(T ) ∼ N(T ).

Here N(T ) is the zero counting function64 for L(s), and N0(T ) counts only the zeros on the
critical line64. In other words, 100 percent of the nontrivial zeros (in the sense of density)
are on the critical line. An equivalent assertion is

N(T )−N0(T ) = o(T log T ),

which makes it clear that the 100% Hypothesis still allows quite a few zeros off the critical
line.

The term “100% Hypothesis” is not standard.

In contrast to most of the other conjectures in this section, the 100% Hypothesis is
not motivated by applications to the prime numbers. Indeed, at present there are no known
consequences of this hypothesis.

B.2.c The Density Hypothesis. The Density Hypothesis is the assertion

N(σ, T ) = O(T 2(1−σ)+ε)

for all ε > 0. Note that this is nontrivial only when σ > 1
2
.

The Density Hypothesis follows from the Lindelöf Hypothesis. The importance of the
Density Hypothesis is that, in terms of bounding the gaps between consecutive primes, the
density hypothesis appears to be as strong as the Riemann Hypothesis.

Results on N(σ, T ) are generally obtained from mean values of the zeta-function. Fur-
ther progress in this direction, particularly for σ close to 1

2
, appears to be hampered by the

great difficulty in estimating the moments of the zeta-function on the critical line.

See Titchmarsh [88c:11049], Chapter 9, for an extensive discussion.

B.2.d Zeros on the σ = 1 line. By the Euler Product70, the L-function L(s) does not
vanish in the half-plane σ > 1. Thus, the simplest nontrivial assertion about the zeros of L(s)
is that L(s) does not vanish on the σ = 1 line. Such a result is known as a Prime Number
Theorem for L(s). The name arises as follows. The classical Prime Number Theorem(PNT):

π(x) :=
∑

p≤X

1

26page 16, Zeros on the σ = 1 line
25page 16, The Density Hypothesis
35page 16, 100 percent hypothesis
25page 16, The Density Hypothesis
36page 17, Landau-Siegel zeros
64page 4, Terminology and basic properties
64page 4, Terminology and basic properties
70page 5, Euler product
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∼ X

logX
,

where the sum is over the primes p, is equivalent to the assertion that ζ(s) 6= 0 when σ = 1.
The deduction of the PNT from the nonvanishing involves applying a Tauberian theorem to
ζ ′/ζ. The Tauberian Theorem requires that ζ ′/ζ be regular on σ = 1, except for the pole at
s = 1.

The Prime Number Theorem for ζ(s) was proven by Hadamard and de la Valee Poissin
in 1896. Jacquet and Shalika [55 #5583 ] proved the corresponding result for L-functions
associated to automorphic representations on GL(n). It would be significant to prove such
a result for the Selberg Class11.

B.2.e Landau-Siegel zeros. A zero of L(s, χ) which is very close to s = 1 is called a
Landau-Siegel zero, often shortened to “Siegel zero.” [this section will be expanded]

B.2.f The vertical distribution of zeros of L-functions. The Riemann Hypothesis55

is an assertion about the horizontal distribution of zeros of L-functions2. The question of
the vertical distribution of the zeros may be even more subtle. Questions of interest include
the neighbor spacing of zeros, the very large and very small gaps between zeros, correlations
among zeros, etc.

The current view is that Random Matrix Theory provides the description of these and
many other properties of L-functions and their zeros. This is discussed on the web site
L-functions and Random Matrix Theory2.

B.3 The Lindelof hypothesis and breaking convexity

B.4 Perspectives on the Riemann Hypothesis

An attraction of the Riemann Hypothesis is that it arises naturally in many different
contexts. Several examples are given below.

B.4.a Analytic number theory. The motivation for studying the zeros of the zeta-
function is the precise relationship between the zeros of ζ(s) and the errot term in the
prime number theorem26. Define the Von Mangoldt function by

Λ(n) =

{

log p if n = pk

0 otherwise,

where p is a prime number. Then

ψ(X) :=
∑

n≤X

Λ(n)

= Li(X) +O(Xσ0+ε)

11page 11, The Selberg class
55page 14, Riemann Hypotheses
2page 4, What is an L-function?
2http://aimath.org/WWN/lrmt/
26page 16, Zeros on the σ = 1 line
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if and only if ζ(s) does not vanish for σ > σ0. There Li(X) is the logarithmic integral

Li(X) =

∫ X

2

dt

log t
.

In particular, the best possible error term in the prime number theorem is O(X
1
2
+ε), which

is equivalent to the Riemann Hypothesis.

Similarly, the Generalized Riemann Hypothesis17 is equivalent to the best possible error
term for the counting function of primes in arithmetic progressions.

Riemann Hypotheses for other L-functions have not yet been shown to be strongly
connected to the distribution of the prime numbers.

B.4.b Physics and zeros of the zeta-function. The local statistics of the imaginary parts
γn of the complex zeros of the Riemann zeta function show the characteristic distribution
seen in the eigenvalues of a matrix pulled at random from the unitary group endowed with
Haar measure. This collection of matrices is called by physicists the CUE: circular unitary
ensemble. For more details on the statistics of the zeros of the zeta function and other
L-functions, see L-functions and Random Matrix Theory3.

These very same CUE statistics are also seen on a local scale when one studies the
distribution of the semiclassical eigenvalues En of quantum systems having classical analogues
that display chaotic behaviour and are not symmetric under time-reversal.

This suggests that the γn can be construed as the eigenvalues of some Hermitean
operator which is itself obtained by quantizing a classical dynamical system sharing the
properties mentioned above: chaoticity and no time-reversal symmetry.

Furthermore, the long-range statistics of γn for the Riemann zeta function depend
on the prime numbers in a manner which is very accurately predicted by formulae with
analogues in semiclassical periodic orbit theory. This suggests that the periodic orbits of
the hypothetical system underlying the Riemann zeta function would be determined by the
positions of the prime numbers.

Clearly the identification of a dynamical system which when quantized produced a
Hermitean operator with eigenvalues En related to the complex Riemann zeros ρn by iEn =
ρn − 1/2 would lead to a proof of the Riemann Hypothesis. In the field of quantum chaos
studies are made of the very systems which are relevant in such a search, and results from
this field suggest what many of the characteristics of such a system should be. For a detailed
review of these issues and further references see Berry and Keating [2000f:11107].

B.4.c Probability.

B.4.d Fractal geometry.

Chapter C: Equivalences to the Riemann Hypothesis

The Riemann Hypothesis has been shown to be equivalent to an astounding variety of
statements in several different areas of mathematics. Some of those equivalences are nearly
trivial. For example, RH is equivalent to the nonvanishing of ζ(s) in the half-plane σ > 1

2
.

Other equivalences appear surprizing and deep. Examples of both kinds are collected below.

17page 14, The Generalized Riemann Hypothesis
3http://aimath.org/WWN/lrmt/
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The results in the following articles will eventually find their way here:

[96g:11111] [98f:11113] [96a:11085] [95c:11105] [94i:58155] [89j:15029] [87b:11084]

C.1 Equivalences involving primes

The main point of Riemann’s original paper4 of 1859 is that the two sequences, of prime
numbers on the one hand, and of zeros of ζ on the other hand, are in duality. A precise
mathematical formulation of this fact is given by the so-called explicit formulas of prime
number theory (Riemann, von Mangoldt, Guinand, Weil). Therefore, any statement about
one of these two sequences must have a translation in terms of the other. This is the case
for the Riemann hypothesis.

C.1.a The error term in the Prime Number Theorem. The Riemann hypothesis is
equivalent to the following statement.

For every positive ε, the number π(x) of prime numbers ≤ x is

Li(x) +O(x1/2+ε).

Here Li is the “Logarithmic integral” function, defined by

Li(x) :=

∫ x

0

dt

log t
,

the integral being evaluated in principal value in the neighbourhood of x = 1.

Roughly speaking, it means that the first half of the digits of the n-th prime are those
of Li−1(n).

C.1.b More accurate estimates. The Riemann hypothesis is equivalent to the following
statement.

π(x)− li(x) = O(
√
x log x),

(von Koch, Acta Mathematica 24 (1901), 159-182).

L.Schoenfeld [56 #15581b] gave in 1976 a numerically explicit version of this equivalent
form :

|π(x)− li(x)| ≤
√
x log x

8π
, x ≥ 2657.

C.2 Equivalent forms involving arithmetic functions

The Riemann hypothesis is equivalent to several statements involving average or ex-
treme values of arithmetic functions. These are complex-valued functions, defined on the set
of positive integers, often related to the factorization of the variable into a product of prime
numbers.

C.2.a Averages. These equivalent statements have the following shape :
∑

n≤x

f(n) = F (x) +O(xα+ε), x→ +∞,

where f is an arithmetic function, F (x) a smooth approximation to
∑

n≤x f(n), and α a real
number.

4http://www.maths.tcd.ie/pub/HistMath/People/Riemann/Zeta
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C.2.a.i The von Mangoldt function. The von Mangoldt function Λ(n) is defined as log p if n
is a power of a prime p, and 0 in the other cases. Define :

ψ(x) :=
∑

n≤x

Λ(n).

Then RH is equivalent to each of the following statements

ψ(x) = x+O(x1/2+ε),

for every ε > 0 ;

ψ(x) = x+O(x1/2 log2 x);

and

|ψ(x)− x| ≤ x1/2 log2 x

8π
, x > 73.2.

(see L. Schoenfeld [56 #15581b]).

C.2.a.j The Möbius function. The Möbius function µ(n) is defined as (−1)r if n is a product
of r distinct primes, and as 0 if the square of a prime divides n. Define :

M(x) :=
∑

n≤x

µ(n).

Then RH is equivalent to each of the following statements

M(x)¿ x1/2+ε,

for every positive ε ;

M(x)¿ x1/2 exp(A log x/ log log x);

for some positive A.

Both results are due to Littlewood.

C.2.b Large values. The RH is equivalent to several inequalities of the following type :

f(n) < F (n),

where f is an “arithmetic”, “irregular” function, and F an “analytic”, “regular” function.

C.2.b.i The sum of divisors of n. Let

σ(n) =
∑

d|n

d

denote the sum of the divisors of n.

G. Robin [86f:11069] showed that the Riemann Hypothesis is equivalent to

σ(n) < eγn log log n

for all n ≥ 5041, where γ is Euler’s constant. That inequality does not leave much to spare,
for Gronwall showed

lim sup
n→∞

σ(n)

n log log n
= eγ,
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and Robin showed unconditionally that

σ(n) < eγn log log n+ 0.6482
n

log log n
,

for n ≥ 3.

J. Lagarias [arXiv:math.NT/0008177] elaborated on Robin’s work and showed that the
Riemann Hypothesis is equivalent to

σ(n) < Hn + exp(Hn) log(Hn)

for all n ≥ 2, where Hn is the harmonic number

Hn =
n
∑

j=1

1

j
.

By definition,

γ = lim
n→∞

Hn − log n,

so Lagarias’ and Robin’s inequalities are the same to leading order.

C.2.b.j The Euler function. The Euler function φ(n) is defined as the number of positive
integers not exceeding n and coprime with n. Also, let Nk be the product of the first k
prime numbers, and γ be Euler’s constant.

Then RH is equivalent to each of the following statements :

Nk

φ(Nk)
> eγ log logNk,

for all k’s ;

Nk

φ(Nk)
> eγ log logNk,

for all but finitely many k’s.

This is due to Nicolas [85h:11053].

C.2.b.k The maximal order of an element in the symmetric group. Let g(n) be the maximal
order of a permutation of n objects, ω(k) be the number of distinct prime divisors of the
integer k and Li be the integral logarithm.

Then RH is equivalent to each of the following statements :

log g(n) <
√

Li−1(n) for n large enough;

ω(g(n)) < Li(
√

Li−1(n)) for n large enough.

This is due to Massias, Nicolas and Robin [89i:11108].

C.3 Equivalences involving the Farey series

Equidistribution of Farey sequence: Let rv be the elements of the Farey sequence of
order N , v = 1, 2, . . .Φ(N) where Φ(N) =

∑N
n=1 φ(n). Let δv = rv − v/Φ(N). Then RH if
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and only if
Φ(N)
∑

v=1

δ2v ¿ N−1+ε.

Also, RH if and only if
Φ(N)
∑

v=1

|δv| ¿ N1/2+ε.

Here is a good bibliography5 on this subject.

C.3.a Mikolas functions.

C.3.b Amoroso’s criterion. Amoroso [MR 98f:11113] has proven the following interesting
equivalent to the Riemann Hypothesis. Let Φn(z) be the nth cyclotomic polynomial and let
FN(z) =

∏

n≤N Φn(z). Let

h̃(FN) = (2π)−1
∫ π

−π

log+ |F (eiθ)| dθ.

Then, h̃(Fn)¿ Nλ+ε is equivalent to the assertion that the Riemann zeta function does not
vanish for Rez ≥ λ+ ε.

C.4 Weil’s positivity criterion

André Weil [MR 14,727e] proved the following explicit formula (see also A. P. Guinand
[MR 10,104g] which specifically illustrates the dependence between primes and zeros. Let
h be an even function which is holomorphic in the strip |=t| ≤ 1/2 + δ and satisfying
h(t) = O((1 + |t|)−2−δ) for some δ > 0, and let

g(u) =
1

2π

∫ ∞

−∞

h(r)e−iur dr.

Then we have the following duality between primes and zeros:

∑

γ

h(γ) = 2h( i
2
)− g(0) log π +

1

2π

∫ ∞

−∞

h(r)
Γ′

Γ
(1
4
+ 1

2
ir) dr − 2

∞
∑

n=1

Λ(n)√
n
g(log n).

In this formula, a zero is written as ρ = 1/2 + iγ where γ ∈ C; of course RH is the assertion
that all of the γ are real. Using this duality Weil gave a criterion76 for RH.

C.4.a Bombieri’s refinement. Bombieri [1 841 692]has given the following version of
Weil’s criterion: The Riemann Hypothesis holds if and only if

∑

ρ

ĝ(ρ)ĝ(1− ρ) > 0

for every complex-valued g(x) ∈ C∞0 (0,∞) which is not identically 0, where

ĝ(s) =

∫ ∞

0

g(x)xs−1 dx

5http://www.math.jussieu.fr/∼miw/telecom/biblio-Amoroso.html
76page 22, Bombieri’s refinement
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C.4.b Li’s criterion. Xian-Jin Li [98d:11101] proved the following assertion: The Riemann
Hypothesis is true if and only if λn ≥ 0 for each n = 1, 2, . . . where

λn =
∑

ρ

(1− (1− 1/rho)n)

Another expression for λn is given by

λn =
1

(n− 1)!

dn

dsn
(sn−1 log ξ(s))|s=1

and

ξ(s) =
1

2
s(s− 1)Γ(s/2)ζ(s)

C.5 Equivalences involving function-theoretic properties of ζ

C.5.a Speiser’s criterion. A. Speiser (Math Annahlen 110 (1934) 514-521) proved that
the Riemann Hypothesis is equivalent to the non-vanishing of the derivative ζ ′(s) in the
left-half of the critical strip 0 < σ < 1/2. Levinson and Montgomery [MR 54 #5135] gave
an alternative, quantitative version of this result which led to Levinson’s [MR 58 #27837]
discovery of his method for counting zeros on the critical line. He then proceeded to prove
that at least 1/3 of the zeros of ζ(s) are on the critical line.

C.5.b Logarithmic integrals. V. V. Volchkov [MR 96g:11111] has recently proved that

the truth of the Riemann hypothesis is equivalent to the equality
∫∞

0

∫∞

1/2
1−12y2

)1+4y2)3
log(|ζ(x+

iy)|) dx dy = π 3−γ
32

C.5.c An inequality for the logarithmic derivative of xi. The Riemann Hypothesis
is true if and only if

<ξ
′(s)

ξ(s)
> 0

for <s > 1/2 (see Hinkkanen [MR 98d:30047 ]).

See also Lagarias’ paper (to appear in Acta Arithmetica) at www.research.att.com/∼jcl/doc/positivity.ps
C.6 Equivalences involving function spaces

Beginning with Wiener’s paper, “Tauberian Theorems” in the Annals of Math (1932)
a number of functional analytic equivalences of RH have been proven. These involve the
completeness of various spaces. M. Balazard has recently written an excellent survey on
these developments (See Surveys in Number Theory, Papers from the Millenial Conference
on Number Theory, A. K. Peters, 2003.)

C.6.a The Beurling-Nyman Criterion. In his 1950 thesis [MR 12,108g], B. Nyman, a
student of A. Beurling, proved that the Riemann Hypothesis is equaivalent to the assertion
that N(0,1) is dense in L2(0, 1). Here, N(0,1) is the space of functions

f(t) =
n
∑

k=1

ckρ(θk/t)

for which θk ∈ (0, 1) and such that
∑n

k=1 ck = 0.
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Beurling [MR 17,15a] proved that the following three statements regarding a number
p with 1 < p <∞ are equivalent:

(1) ζ(s) has nozeros in σ > 1/p

(2) N(0,1) is dense in Lp(0, 1) (3) The characteristic function χ(0,1) is in the closure of
N(0,1) in Lp(0, 1)

C.6.a.i A mollification problem. Baez-Duarte [arXiv:math.NT/0202141] has recently proven
that the Riemann Hypothesis is equivalent to the assertion that

inf
AN (s)

∫ ∞

−∞

|1− AN(1/2 + it)ζ(1/2 + it|2) dt
1
4
+ t2

tends to 0 as N →∞ where AN(s) can be any Dirichlet polynomial of length N :

AN(s) =
N
∑

n=1

an
ns
.

Previously, Baez-Duarte, Balazard, Landreaux, and Saias had noted that as a conse-
quence of the Nyman-Beurling criterion, the above assertion implies RH.

C.6.b Salem’s criterion. R. Salem [MR 14,727a] proved that the non-vanishing of ζ(s) on
the σ –line is equivalent to the completeness in L1(0,∞) of {kσ(λx), λ > 0} where

kσ(x) =
xσ−1

ex + 1
.

C.7 Other analytic estimates

C.7.a M. Riesz series. M. Riesz (Sur l’hypothèse de Riemann, Acta Math. 40 (1916),
185-190) proved that the Riemann Hypothesis is equivalent to the assertion that

∞
∑

k=1

(−1)k+1xk
(k − 1)!ζ(2k)

¿ x1/2+ε

C.7.b Hardy-Littlewood series. Hardy and Littlewood (Acta Mathematica 41 (1918),
119 - 196) showed that the Riemann Hypothesis is equivalent to the estimate

∞
∑

k=1

(−x)k
k!ζ(2k + 1)

¿ x−1/4

as x→.

C.7.c Polya’s integral criterion. Polya (see Collected Works, Volume 2, Paper 102, sec-
tion 7) gave a number of integral criteria for Fourier transforms to have only real zeros. One
of these, applied to the Riemann ξ-function, is as follows.

The Riemann Hypothesis is true if and only if
∫ ∞

−∞

∫ ∞

−∞

Φ(α)Φ(β)ei(α+β)xe(α−β)y(α− β)2 dα dβ ≥ 0
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for all real x and y where

Φ(u) = 2
∞
∑

n=1

(2n4π2e
9
2
u − 3n2πe

5
2
u)e−n

2πe2u

C.7.d Newman’s criterion. Charles Newman [MR 55 #7944], building on work of de-
Bruijn [MR 12,250] defined

Ξλ(z) =

∫ ∞

−∞

Φ(t)e−λt
2

eiz dt

where

Φ(t) = 2
∞
∑

n=1

(2n4π2e
9
2
t − 3n2πe

5
2
t)e−n

2πe2t

.

Note that Ξ0(z) = Ξ(z).

He proved that there exists a constant Λ (with −1/8 ≤ Λ < ∞) such that Ξλ(z) has
only real zeros if and only if λ ≥ Λ. RH is equivalent to the assertion that Λ ≤ 0.

The constant Λ (which Newman conjectured is equal to 0) is now called the deBruijn-
Newman constant. A. Odlyzko [MR 2002a:30046] has recently proven that −2.710−9 < Λ.

C.8 Grommer inequalities

Let

−Ξ′

Ξ
(t) = s1 + s2t+ s3t

2 + . . . .

Let Mn be the matrix whose i, j entry is si+j. J. Grommer (J. Reine Angew. Math. 144
(1914), 114–165) proved that necessary and sufficient conditions for the truth of the Riemann
Hypothesis are that

detMn > 0

for all n ≥ 1.

See also the paper of R. Alter [MR 36 #1399].

C.9 Redheffer’s matrix

The Redheffer matrix A(n) is an n × n matrix of 0’s and 1’s defined by A(i, j) = 1
if j = 1 or if i divides j, and A(i, j) = 0 otherwise. Redheffer proved that A(n) has
n−[n log 2]−1 eigenvalues equal to 1. Also, A has a real eigenvalue (the spectral radius) which

is approximately
√

(n), a negative eigenvalue which is approximately−√n and the remaining
eigenvalues are small. The Riemann hypothesis is true if and only if det(A) = O(n1/2+ε) for
every ε > 0.

Barrett Forcade, Rodney, and Pollington [MR 89j:15029] give an easy proof of Redhef-
fer’s theorem. They also prove that the spectral radius of A(n) is = n1/2 + 1

2
log n + O(1).

See also the paper of Roesleren [ MR 87i:11111].

Vaughan [MR 94b:11086] and [MR 96m:11073] determines the dominant eigenvalues
with an error term O(n−2/3) and shows that the nontrivial eigenvalues are ¿ (log n)2/5

(unconditionally), and ¿ log log(2 + n) on Riemann’s hypothesis.

It is possible that the nontrivial eivenvalues lie in the unit disc.

C.10 Equivalences involving dynamical systems
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Chapter D: Attacks on the Riemann Hypothesis

The topics in this section are generally of the form “A implies RH,” where there is
some reason to hope that “A” could be attacked.

D.1 Non-commutative number theory: around ideas of A. Connes

D.1.a Dynamical system problem studied by Bost–Connes. We state the problem
solved by Bost and Connes in [BC] (J-B. Bost, A. Connes, Selecta Math. (New Series), 1,
(1995) 411–457) and its analogue for number fields, considered in [HL](D. Harari, E. Le-
ichtnam, Selecta Mathematica, New Series 3 (1997), 205-243), [ALR](J. Arledge, M. Laca,
I. Raeburn, Doc. Mathematica 2 (1997) 115–138) and [Coh](Paula B Cohen, J. Théorie des
Nombres de Bordeaux, 11 (1999), 15–30). A (unital) C∗-algebra B is an (unital) algebra
over the complex numbers C with an adjoint x 7→ x∗, x ∈ B, that is, an anti-linear map
with x∗∗ = x, (xy)∗ = y∗x∗, x, y ∈ B, and a norm ‖ . ‖ with respect to which B is com-
plete and addition and multiplication are continuous operations. One requires in addition
that ‖xx∗‖ = ‖x‖2 for all x ∈ B. A C∗ dynamical system is a pair (B, σt), where σt is a
1-parameter group of C∗-automorphisms σ : R 7→ Aut(B). A state ϕ on a C∗-algebra B is a
positive linear functional on B satisfying ϕ(1) = 1. The definition of Kubo-Martin-Schwinger
(KMS) of an equilibrium state at inverse temperature β is as follows.

Definition: Let (B, σt) be a dynamical system, and ϕ a state on B. Then ϕ is an
equilibrium state at inverse temperature β, or KMSβ-state, if for each x, y ∈ B there is a
function Fx,y(z), bounded and holomorphic in the band 0 < Im(z) < β and continuous on its
closure, such that for all t ∈ R,

Fx,y(t) = ϕ(xσt(y)), Fx,y(t+
√
−1β) = ϕ(σt(y)x). (6)

A symmetry group G of the dynamical system (B, σt) is a subgroup of Aut(B) com-
muting with σ:

g ◦ σt = σt ◦ g, g ∈ G, t ∈ R.
Consider now a system (B, σt) with interaction. Then, guided by quantum statistical me-
chanics, we expect that at a critical temperature β0 a phase transition occurs and the symme-
try is broken. The symmetry group G then permutes transitively a family of extremal KMSβ-
states generating the possible states of the system after phase transition: the KMSβ-state
is no longer unique. This phase transition phenomenon is known as spontaneous symmetry
breaking at the critical inverse temperature β0. We state the problem related to the Riemann
zeta function4 and solved by Bost and Connes.

Problem 1: Construct a dynamical system (B, σt) with partition function the zeta function
ζ(β) of Riemann, where β > 0 is the inverse temperature, having spontaneous symmetry
breaking at the pole β = 1 of the zeta function with respect to a natural symmetry group.

The symmetry group turns out to be the unit group of the ideles, given by W =
∏

p Z∗p
where the product is over the primes p and Z∗p = {up ∈ Qp : |up|p = 1}. We use here the

normalisation |p|p = p−1. This is the same as the Galois group Gal(Qab/Q), where Qab is the
maximal abelian extension of the rational number field Q. The interaction detected in the

4page 7, The Riemann zeta function
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phase transition comes about from the interaction between the primes coming from consid-
ering at once all the embeddings of the non-zero rational numbers Q∗ into the completions
Qp of Q with respect to the prime valuations |.|p. The following natural generalisation of
this problem to the number field case and the Dedekind zeta function66 was solved in [Coh]
(see also [HL], [ALR]).

Problem 2: Given a number field K, construct a dynamical system (B, σt) with partition
function the Dedekind zeta function ζK(β), where β > 0 is the inverse temperature, having
spontaneous symmetry breaking at the pole β = 1 of the Dedekind function with respect to a
natural symmetry group.

D.1.b The C*-algebra of Bost–Connes. We give a different construction of the C∗-
algebra of Bost–Connes to that found in their original paper. It is directly inspired by work
of Arledge-Laca-Raeburn. Let Af denote the ring of finite adeles of Q, that is the restricted
product of Qp with respect to Zp as p ranges over the finite primes. Recall that this restricted
product consists of the infinite vectors (ap)p, indexed by the primes p, such that ap ∈ Qp

with ap ∈ Zp for almost all primes p. The group of (finite) ideles J consists of the invertible
elements of the adeles. Let Z∗p be those elements of up ∈ Zp with |up|p = 1. Notice that an
idele (up)p has up ∈ Q∗

p with up ∈ Z∗p for almost all primes p. Let

R =
∏

p

Zp, I = J ∩R, W =
∏

p

Z∗p.

Further, let I denoted the semigroup of integral ideals of Z, which are of the form mZ where
m ∈ Z. Notice that I as above is also a semigroup. We have a natural short exact sequence,

1→ W → I → I→ 1. (7)

The map I → I in this short exact sequence is given as follows. To (up)p ∈ I associate
the ideal

∏

p p
ordp(up) where ordp(up) is determined by the formula |up|p = p−ordp(up). By the

Strong Approximation Theorem we have

Q/Z ' Af/R ' ⊕pQp/Zp (8)

and we have therefore a natural action of I on Q/Z by multiplication in Af/R and transport
of structure. We have the following straightforward Lemmata

Lemma 1. For a = (ap)p ∈ I and y ∈ Af/R, the equation

ax = y

has n(a) =:
∏

p p
ordp(ap) solutions in x ∈ Af/R. Denote these solutions by [x : ax = y].

Let C[Af/R] =: span{δx : x ∈ Af/R} be the group algebra of Af/R over C, so that
δxδx′ = δx+x′ for x, x

′ ∈ Af/R. We have,

Lemma 2. The formula

αa(δy) =
1

n(a)

∑

[x:ax=y]

δx

for a ∈ I defines an action of I by endomorphisms of C∗(Af/R).

66page 8, Dedekind zeta functions
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We now appeal to the notion of semigroup crossed product developed by Laca and
Raeburn, applying it to our situation. A covariant representation of (C∗(Af/R), I, α) is a
pair (π, V ) where

π : C∗(Af/R)→ B(H)
is a unital representation and

V : I → B(H)
is an isometric representation in the bounded operators in a Hilbert spaceH. The pair (π, V )
is required to satisfy,

π(αa(f)) = Vaπ(f)V
∗
a , a ∈ I, f ∈ C∗(Af/R).

Such a representation is given by (λ, L) on l2(Af/R) with orthonormal basis {ex : x ∈ Af/R}
where λ is the left regular representation of C∗(Af/R) on l2(Af/R) and

Laey =
1

√

n(a)

∑

[x:ax=y]

ex.

The universal covariant representation, through which all other covariant representations
factor, is called the (semigroup) crossed product C∗(Af/R)oαI. This algebra is the universal
C∗-algebra generated by the symbols {e(x) : x ∈ Af/R} and {µa : a ∈ I} subject to the
relations

µ∗aµa = 1, µaµb = µab, a, b ∈ I, (9)

e(0) = 1, e(x)∗ = e(−x), e(x)e(y) = e(x+ y), x, y ∈ Af/R, (10)

1

n(a)

∑

[x:ax=y]

e(x) = µae(y)µ
∗
a, a ∈ I, y ∈ Af/R. (11)

When u ∈ W then µu is unitary, so that µ∗uµu = µuµ
∗
u = 1 and we have for all x ∈ Af/R,

µue(x)µ
∗
u = e(u−1x), µ∗ue(x)µu = e(ux). (12)

Therefore we have a natural action of W as inner automorphisms of C∗(Af/R) oα I.

To recover the C∗-algebra of Bost–Connes we must split the above short exact sequence.
Let mZ, m ∈ Z, be an ideal in Z. This generator m is determined up to sign. Consider
the image of |m| in I under the diagonal embedding q 7→ (q)p of Q∗ into I, where the p-th
component of (q)p is the image of q in Q∗

p under the natural embedding of Q∗ into Q∗
p. The

map

+ : mZ 7→ (|m|)p (13)

defines a splitting of the short exact sequence. Let I+ denote the image and define B to be
the semigroup crossed product C∗(Af/R) oα I+ with the restricted action α from I to I+.
By transport of structure, this algebra is easily seen to be isomorphic to a semigroup crossed
product of C∗(Q/Z) by N+, where N+ denotes the positive natural numbers. This is the
algebra of Bost–Connes. The replacement of I by I+ now means that the group W acts by
outer automorphisms. For x ∈ B, one has that µ∗uxµu is still in B (computing in the larger
algebra C∗(Af/R)oα I), but now this defines an outer action of W . This coincides with the
definition of W as the symmetry group as in the paper of Bost–Connes.

D.2 Iwaniec’ approach
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D.2.a families of rank 2 elliptic curves. Henryk Iwaniec during the conference on the
Riemann Hypothesis, New York, 2003.

An exposition is being prepared.

D.3 Unsuccessful attacks on the Riemann Hypothesis

The results in this section are generally of the form “A implies RH,” where A has been
shown to be false.

D.3.a Zeros of Dirichlet polynomials. Turan showed that if for all sufficiently large N ,
the Nth partial sum of ζ(s) does not vanish in σ > 1 then the Riemann Hypothesis follows.

He [MR 10,286a] strengthened this criterion by showing that for every ε > 0 there is
an N0(ε) such that if the Nth partial sum

N
∑

n=1

n−s

of the zeta-function has no zeros in σ > 1 + N−1/2+ε for all N > N0(ε) then the Riemann
Hypothesis holds.

H. Montgomery [MR 87a:11081] proved that this approach cannot work because for
any positive number c < 4/π − 1 the Nth partial sum of ζ(s) has zeros in the half-plane

σ > 1 + c(log logN)/ logN.

D.3.b de Branges’ positivity condition. Let E(z) be an entire function satisfying
|E(z̄)| < |E(z)| for z in the upper half-plane. Define a Hilbert space of entire functions
H(E) to be the set of all entire functions F (z) such that F (z)/E(z) is square integrable on
the real axis and such that

|F (z)|2 6 ‖F‖2H(E)K(z, z)

for all complex z, where the inner product of the space is given by

〈F (z), G(z)〉H(E) =
∫ ∞

−∞

F (x)Ḡ(x)

|E(x)|2 dx

for all elements F,G ∈ H(E) and where

K(w, z) =
E(z)Ē(w)− Ē(z̄)E(w̄)

2πi(w̄ − z)
is the reproducing kernel function of the space H(E), that is, the identity

F (w) = 〈F (z), K(w, z)〉H(E)
holds for every complex w and for every element F ∈ H(E).

de Branges [MR 87m:11050] and [MR 93f:46032] proved the following beautiful

Theorem . Let E(z) be an entire function having no real zeros such that |E(z̄)| < |E(z)|
for =z > 0, such that Ē(z̄) = εE(z− i) for a constant ε of absolute value one, and such that
|E(x+ iy)| is a strictly increasing function of y > 0 for each fixed real x. If <〈F (z), F (z +
i)〉H(E) > 0 for every element F (z) ∈ H(E) with F (z+ i) ∈ H(E), then the zeros of E(z) lie
on the line =z = −1/2, and <{Ē ′(w)E(w + i)/2πi} > 0 when w is a zero of E(z).

Let E(z) = ξ(1− iz). Then it can be shown that |E(x− iy)| < |E(x+ iy)| for y > 0,
and that |E(x + iy)| is a strictly increasing function of y on (0,∞) for each fixed real x.



30

Therefore, it is natural to ask whether the Hilbert space of entire functions H(E) satisfies
the condition that

<〈F (z), F (z + i)〉H(E) > 0

for every element F (z) of H(E) such that F (z+ i) ∈ H(E), because if so, then the Riemann
Hypothesis would follow.

It is shown in [MR 2001h:11114] that this condition is not satisfied.

Chapter E: Zeta Gallery

Chapter F: Anecdotes about the Riemann Hypothesis


