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ABSTRACT

This paper is concerned with complementing the known analytical studies of the pure coalescence equa-
tion. There is still a need for better analytical tools for the analysis of this problem even though high-speed
computers have contributed much to the knowledge of this system. Specifically, when the detailed micro-
physics is incorporated into a large-scale, three-dimensional, moist, deep-convection model, it is currently
impossible to solve the coalescence equation numerically for several size categories. Hence, there is a need
for better analytical tools. In particular, we are concerned with the relationships between integral power
moments of the size spectrum and the collection kernel, relationships between Friedlander’s similarity
solutions and the kernel, bounds for the size spectrum, and various power-moment inequalities. The results
we obtained will allow us to make reasonable approximations for spectra which can, in turn, be used in

large-scale convection models.

1. Introduction

The scalar transport equation being considered in
this paper is concerned with the coalescence or coagula-
tion of particles in a large, but finite, segment V of a
homogeneous cloud of aerosol particles or water drop-
lets. In this volume V there is no inflow or outflow of
particles and no particle breakup or production; the
only process which is acting is coalescence or coagula-
tion. In addition, the physics of the coalescence process
is independent of time; that is, the kernel in the scalar
transport equation only depends upon the size or mass
of the particles. Briefly, the physical problem can be
stated as follows: initially, there is a ‘“‘continuous”
distribution of various sizes of particles throughout the
volume V; then as time goes on, the particles collide and
coalesce in such a manner that total mass is conserved.
The scalar transport equation is a statement of this
conservation law.

Several fine papers have been written in recent years
concerning various analytical properties of the scalar
transport equation. Some of the topics studied have
been the existence, uniqueness, positivity, boundedness
and continuity of solutions, the continuity of solutions
with reference to variations in the initial size spectra
and collection kernels, and the existence of similarity
solutions. These results have greatly added to the
knowledge of the characteristics of the transport
equation, and have proven useful in extending the list
of known exact solutions for the system and in checking
new approximate solution techniques. Through the
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application of these properties, certain candidates for
the initial spectra and collection kernels have been
eliminated.

Even though high-speed digital computers have been
used to numerically solve the transport equation (Berry,
1967), there is still a great need to study the properties
of the solutions of this system. Knowledge of these
analytical properties can be used in the assessment of
the sensitivity of the evolving size spectrum to the
forms of the initial spectrum and the collection kernel,
to evaluate the proper type of approximations for
“physical” type kernels, and to determine the potential
accuracy of finite-difference schemes. All of these
questions are important and cannot be answered to any
great degree from the study of the numerical solutions
because of the inaccuracies due to the large range over
which the particle size and the size spectrum vary. The
use of logarithms by Berry (1967) does not completely
eliminate this problem with numerical solutions,
especially in the “tail” of the spectrum.

In this author’s opinion there is even a more im-
portant reason for seeking new analytical properties of
the solutions for the coalescence equation. This new
reason is a result of the following project being con-
ducted at the National Center for Atmospheric Re-
search (NCAR). We are currently constructing a three-
dimensional, moist, deep-convection model which will
initially consider the following dependent variables:
three velocity components, pressure, density, absolute
temperature, and the mixing ratios of water vapor,
cloud water, cloud ice, rain and hail. The domain of
integration will be 50 km by 50 km by 20 km with a
mesh size of 500 m in each direction. For our computer
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system, the CDC 7600, it will be impossible to consider
2040 particle sizes for each of the water categories
(cloud water, cloud ice, rain and hail) and then solve
coalescence-type equations to determine how these
particles combine. However, we will want a better
microphysical formulation than mixing ratios and mean
particle sizes as our cloud model evolves. Possibly a
better formulation may be obtained, without an exces-
sive increase in the number of dependent variables,
through the use of the method of moments [see
Stieltjes (1894, 1895) and Golovin (1963a, b)]. Another
possibility may be to approximate the various size
spectra by using upper and lower bounds for the
spectra, or by first approximating physical-type kernels
by a sum of simpler kernels and then obtaining the
exact solutions corresponding to the simpler kernels.
Hence, the purpose of this paper is to determine new
properties of the coalescence equation which will be
useful in developing approximate formulations for the
microphysics in large-scale convective models.

The first results which we obtain are the integral
power moments corresponding to the collection kernel
formed by the linear combination of the constant, sum
and product kernels. From these formulas, we conclude
that the product kernel, or any kernel containing the
product kernel, is indeed a special case.

Using various algebraic and integral inequalities we
derive important power-moment inequalities, some of
which are independent of and others which are depen-
dent on the collection kernel. The form of the kernel not
only strongly dictates the character of the power
moments but is also very influential in the determina-
tion of the solution techniques for the transport
equation. An important solution technique in the
general field of mechanics and physics is the search for
similarity solutions. We show that the existence of a
certain type of similarity solution is greatly restricted
by the form of the kernel.

Finally, we consider the implications of the famous
“moment problem” of Stieltjes (1894, 1895) on the
type of solution and the method of solving the transport
equation. Assuming that the solutions of the coalescence
equation satisfy the hypotheses of the moment problem,
we are then able to consider the method of moments
for obtaining solutions and bounds for these solutions.

2. The scalar transport equation

The continuous form of the scalar transport equation
was probably first derived by Miiller (1928). It is given
by

(v,
at

= —-n(v,t)/w K{(vu)n(e,t)du

1 v
—l—:—Z/ K(v—u, wn(v—u, On(u,)du, (2.1)
0
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where # and v are the volumes of spherical particles, £ is
time, n(z,¢) the time-varying size spectrum or particle
size density function, and K(#,7) the collection kernel.
The first integral in (2.1) accounts for the disappearance
of the » particles due to their coalescence with # par-
ticles, while the second integral accounts for the
production of v particles due to the coalescence of «
and (v,u) particles. If an initial spectrum

1(2,0) =n() 2.2)
is specified along with the collection kernel K(u,v), then
the solution of (2.1) and (2.2) gives the time evolution
of the initial spectrum under the particular coalescence
process described by K(u,v).

In 1957, Melzak proved that if #(v) and K(u,2)
possessed certain boundedness, continuity and posi-
tivity properties, then there exists a unique, non-
negative, continuous and bounded solution of (2.1) and
(2.2). McLeod (1964) extended Melzak’s results to
include a certain class of unbounded kernels, namely
K=Auv, where 4 is a positive constant. The theory of
Melzak and McLeod concerning the existence and
uniqueness of solutions of (2.1) and (2.2) is the only
theory of this kind known to the author of this paper.
Hence, throughout the following discussion we will
either assume that the above theory is valid or we will
invoke the following hypothesis: “assuming that #(v,)
exists and is unique, then ‘such and such’ a result will
follow.” Other hypotheses which are assumed in this
paper are

n(2,0)=n(v) 20,

0<o @ (2.3)

H

K(up)=K(@u)20, 0<u, v< =, (2.4)
where both #(») and K(u,7) are continuous for #,52>0;
finally, #(v) is assumed to be bounded, while K{#,7) may
or may not be bounded.

In our study it is convenient to nondimensionalize
the system. Following the work of Scott (1968), the
nondimensional terms are defined as follows:

U=vgy
V=TUpX
T=FEN
K (4,9) = Ba(y,2) ’ 2:5)

von(v,d) =Nof(x,7)
7)0%(?)) = IVof(x,O) = Nofo(x)

where Ny is the initial total number density, vp the
initial mean volume of. the particles, x and y are non-
dimensional volumes, a(x,y) the nondimensional collec-
tion kernel, 7 the dimensionless time, f(x,7) the
dimensionless size spectrum, and E a normalizing factor
with dimensions of volume per unit time. Substituting
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(2.5) into (2.1) gives

1)
ar

— ) / a9 f,7)dy

+§ /0 o=y, 9) fs—y, ) [(s7)dy, (2.6)

where f(x,0)=fo(x) and alx,y)=a(y,x)>0. The »-
integral power moment of f(x,7) is defined by

M,,(T)=/ 2 f(x,7)dx, 2.7

where »2>0. Scott (1968) and Thompson (1968) have
shown that

M0(0)=1 and Ml(T)=1 (28)

The last equation in (2.8) is an expression for the
conservation of mass within a unit volume of cloud.

3. Power moments for a(x,y)= A+ B(x+y)+Cxy

For any kernel a(x,7) we can derive a set of ordinary
integro-differential equations for the moments M, de-
fined in (2.7) [e.g., Thompson (1968)]. If we multiply
(2.6) by 2*, v20, and integrate over the interval
0<xg =, we get

aM, (T) 1
dr

[ [ [Gety)—a —yJa(e)

X f@,7) f(y,r)dwdy. (3.1)

For the remainder of this section let us consider only
integer »’s; that is, let v=N=0,1,2,3, - - -. For N =0,
(3.1) reduces to

dMy(r
0( )_ __/ / a(x,y)f(x T)f(y,T)dxdy (3 2)
For N'=2,3,4, - - -, we have
dMN(T) 1 N—- Nt
35 G, et
X flw,7) f(y,m)dxdy, (3.3)

T

N
where ( . )
7

obtain the result given in (2.8).

If a(x,y) is a polynomial containing x? and y? terms,
or terms of higher degree, then the right side of (3.3)
contains higher order moments than order V. Therefore,
the system of equations does not “close”; that is, we
cannot solve for the Nth moment without knowing the
(.V+1)st, or higher order moments first. In order to
eliminate this “closure problem,” we will consider the

are binomial coefficients. For N=1, we
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kernel

afx,y)=A~+B(x+y)+Cxy, (3.4)

where 4, B and C are non-negative constants. Also, we
assume that the constant E in (2.5) has been chosen
such that max[4,B,C|=1.

Combining (3.2) and (3.4) gives

dMo(T)

; = “%[A M02(7)+2BM0(T)+C]: (3-5)
ar
where M,(0)=1. From (3.3) and (3.4) we have
AMy(r) 151 /N
=% (s
dr 2 =1 \g
+BM i1 ()M y_i(r)+BM (1) M y1-i(7)
+CM iy (DM yi(r)], (3.6)
where N'=2,3,4, ---, and where
Mx(0) =/ aN fo(x)dz. 3.7
0

Eq. (3.5) can be easily solved for any 4, B, and C; and
(3.6) and (3.7) can be solved inductively for all
N=2,3,--

The set of solutions for (3.5) is given by

2—(B+O)r
M) =T proyc, (3.82)
24+(A+B)r
Di—(B+C) tan(+D%/2)
MO(T) = 3
Di+(4+4B) tan(rD¥/2)
D=AC—B>>0, (3.8b)
M) Fi[14-exp(—Fir) ]— (B4+C)[1—exp(—Ftr)
N P 14exp(—Fir)+(A+B)[1—exp(— Fir) ]
F=B2—AC>0. (3.8¢c)

From these equations we can easily show that whenever
C=0, My(7)>0 for 720 and Mo(7) >0t as 7— 4
[see Drake (1971) for the detailed mathematics].
Similarly, if C#0, then there exists a finite value of 7,
SAY Tmax, SUch that Mo(7max)=0. That is, the total
number density approaches zero in finite time, or
coalescence stops at 7=7max, Unless there are source or
breakup terms in (2.6). It can be shown that Tmax< 2
whenever C=1; and as C — O, 7pax — -0 . Therefore,
whenever C is significantly close to unity, the coales-
cence process is very rapid and My(r) becomes zero in
arelatively short time. This indicates that an admissible
kernel (from the physical point of view) should not
increase as rapidly as a=xy.
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Suppose N =2 in (3.6); then we have

aM(7)
y =A42BM(r)+CM2(7),
.

(3.9)

where M,(0)=M3. The set of solutions for (3.9) is
given by

Ma+[A+BM:z]r

My(r) = . , AC=B, (3.10a)
1—[B+CM20:|T
D*M20+I:A +BM20] tan(D*T)
Mz('r) = ) y
D¥—[B+CMyo] tan(Dtr)
D=AC—B2>0, (3.10b)
MQ(T)

FiM o[ 1+-exp(2Fir) J—(A+B M) [1—exp(2Fir) ]
 Fi{1+4-exp(2Fr) ]+ (BHCMa)[1 —exp(2Fin)]
F=B2—AC>0. (3.10c)

Whenever C=0 (Drake, 1971), M3(r)>0 for 720 and
My(r)— 4 as r— 4o, If C5#0, there is always a
finite value of 7, say 7., at which My(7)— 4. We
can also show that 7, < $7max. Hence, 7, is probably the
upper bound on the 7’s for realistic size spectra. When-
ever C is close to unity, 7, is close to unity; and as
C—0*, 7,— -+, Therefore, we have another
indication of the poor choice of a=xy as a candidate
for a “physical kernel.” .

Another observation concerning M,(r) is that it is
dependent upon the initial spectrum through the
quantity Ms.. This is not necessarily true of the
moments My(r) and My(r). The moment M;(r) is
independent of both fo(x) and a(x,y) over its domain of
definition; however, the domain of definition is kernel-
dependent. The only known kernel for which M(7) is
independent of the initial spectrum fo(x) is that given
in (3.4).

In Drake (1971), we solved the system given in (3.6)
for all N for a=1, x4y, and xy. From these results we
conjecture that as the degree of homogeneity of the
kernel a(x,y) increases, the dependence of the moments
[and hence the spectrum f(x,7) itself] upon the initial
spectrum becomes stronger. For example, when a=1,
the power moments are polynomials in = with a leading
coefficient independent of fo(x). However, when a=xy,
the power moments are rational expressions in 7 and
contain initial values of My in all terms. In addition,
the moments become infinite at 7=Myt. To get some
idea of the range of values for Ms, we consider the
following initial spectra. If fo(x)=¢=, then Myp=2 and
if fo(x) =08(x—1), the Dirac delta function, then Msy=1.
Hence My(r) for a=xy tends to infinity as 7 approaches
some number between 1/2 and 1, while Mo(7) is zero
at 7=2. This last point will be important when we
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consider the radius of convergence of the power series
solution for a=xy in the next section.

4. Exact solutions corresponding to a(x,y) =xy

McLeod (1964) proved a series of existence and
uniqueness theorems for (2.6) with a(x,y) =%y and for
an initial spectrum fo(x). The most important conclu-
sion from McLeod’s work is the fact that we can only
guarantee the existence of unique solutions over a
finite time interval 0K 7< 8, where § is determined by
the second power moment. Hence, from Section 3, we
know that § must be a fixed number <My;~L. In fact,
if 7> 8, then we no longer can satisfy the conservation
of mass property, M1(r)=1. McLeod’s theorems were
not proved for the kernel in (3.4), but we conjecture
that the 7’s obtained from (3.10) are probably the upper
bounds of the intervals of existence for the solutions
corresponding to the kernel in (3.4). Therefore, if C is
close to unity, the kernel and, hence, the spectra are
not very realistic for physical problems. These results
also indicate the danger of expanding a bounded kernel
or a kernel increasing slower than xy in terms of a
truncated power series and then solving the resulting
system; an example of this procedure was proposed by
Thompson (1968).

Scott (1968) considered the kernel a=xy for general
initial spectra. With the exception of a special general-
ized spectrum, Scott studied spectra which satisfy the
following:

BN

fw fo(x)dx=/w xfo(x)dx=1

fo(x)?O, x>0

v 4.1
o) =0, £<0 (D)
folx)#0, forx>1, or forx<1
L[ fo(x)]=G(s) exists J

where G(s) is the Laplace transform of fyo(x). By using
Laplace transforms Scott solved (2.6) for a=xy and the
general fo(x) in (4.1). The result is

s A

where L7![ ] is the inverse Laplace transform.
Scott considered a special family of fo(x)’s, namely,
the gamma distributions given by

( ) (V+1)v+1xve—(v+l)az
Sk = To+1)

»>0. (4.3)

Suppose we now substitute (4.3) into (4.2) where
v=N=0,1,2, ... Then, if we multiply the resulting
series by x%, L=0,1,2, -, and integrate with respect
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to x from O to «, the resulting series is

RONALD L. DRAKE

541

. (VA1) W+ D[N (n41)+L+3n]!

My(r)=2

If A, is the nth term in the series in (4.4), then the ratio,
in the “ratio test,” is given by

Anpr NHD\V2, N43 \N4
R(z)=lim =( > ( > . (4.5)
no 4, \N42 r+N+1

The maximum value of R(r) is unity and it occurs at

N+1 1

N+2 My(0)

(4.6)

Hence, for the uniform convergence of (4.4) for
L=0,1,2,---, 7 must be in the interval 0<7<6
<1/M,(0). This result is consistent with McLeod’s
theorems and with the results given in Section 3.

Scott derived an asymptotic formula for the series
given in (4.2). For (4.3), where v=¥=0,1,2, -- -, this
expansion is given by

L N1\ N4\ V@7
f(x,T)~T—(2N+5)I(2N+6)|: )( ) :I
2r\N+3/\WV+1

Xexp[—(N+1)F(r)], (4.7)
where
T N43\ /N4 1\ B2/ (V+3)
F(r)=1+ —< )( > FUWAD),
N+1 \N+1/\N+2

(4.8)

Since the first 7 factor on the right side of (4.7) is not
very influential, let us consider only the term F (7). The
minimum value of F(r) is zero and occurs at
ra=M51(0). Hence, we have the same result as we
obtained from the series. That is, (4.7) is only valid
for 0K < M7Y0).

This analysis of both the series (4.4) and the asymp-
totic form (4.7), the theory of McLeod, and the moment
relationships in Section 3 explain why the graphical
results given by Scott (1968) for a=xy do not exhibit
the conservation of mass law, but, in fact, indicate that
mass is destroyed after a certain time, namely, when
7> 1o =M51(0). That mass is destroyed by Scott’s
results is most easily seen from the asymptotic form
since F(7) increases for 7> 7¢;.

In order to show the physical restrictions placed on.

realistic cloud processes by the xy kernel, let us consider
the example given by Scott. Here the value of K (#,v) in
(2.1) is assumed to be 1.80X10™* cm?® sec™! when
#=v0=4.189X107? cm?® and »=1.131X10~7 cm®. The
total water content V¢ is assumed to be 1076 gm cm™3.
In Table 1 we have the values of the normalized total

7=0 (1) ILN (n4-1) 4204 1[N 14 7 JO+nt Lt N+L

(4.4)

number density Mo(7), dimensionless time 7, and
dimensional time # in seconds. If M»(0)=2, then the
series solution in (4.2) is only valid up to 315 sec and
the number density has been reduced by only 25%,. For
M,(0)=1, the corresponding values are 629 sec and
509%. Hence, if we seek size spectra which possess
Laplace transforms (and this seems reasonable), it
appears that the xy kernel is highly restrictive physically
speaking.

5. Some general properties of power moments

In Section 3 we have seen the manner in which M(7)
and M,(7) vary with the form of the collection kernel.
In this section we consider more general properties of
the moments M ,(r). Some of these properties are only
v-dependent while other properties also depend upon
the collection kernel. The results obtained in this
section will be useful in the analysis of (2.6) by the
“method of moments.” The details of the mathematics
for this work is given in Drake (1971).

From Beckenbach and Bellman (1965) we have

(+y)y—2—y"20, (5.1a)
ifr>21,220,y2>0, and
(x+y)—2—y"<0, (5.1b)

if 0S<v<1, 20, y20. Combining (3.1) and (5.1) and

assuming that a and f are non-negative proves that

M,(7) monotonically increases with increasing = for

»>1 and M,(r) monotonically decreases for 0<w <1,
Also, from Beckenback and Bellman, we have

w2vx+l—y, v21, 220,
w<vx+1—y, 0<y<l, 220

(5.2a)
(5.2b)

TasLE 1. Relationships between M(7), = and ¢ for a=uxy.

Mo(r) T ¢ (sec)
1 0 0
0.95 0.1 63
0.90 0.2 126
0.85 0.3 189
0.80 0.4 252
0.75 0.5 315
0.70 0.6 377
0.60 0.8 503
0.50 1.0 629
0.40 1.2 755
0.30 14 881
0.20 1.6 1070
0.10 1.8 1131
0.05 1.9 1192
0.01 1.98 1245
0.001 1.998 1255




542

Combining (2.7) and (5.2) gives the moment

relationships
M (1) 2 v+(1—r)M (),
M) SrF (=) Mo(r), 0w L.

(5.3a)
(5.3b)

v=>1,

Since M(0)=1 and M(r) monotonically decreases

with 7, then for all 7220, we have
M(r)21, »21
}. (5.3c)
M,(r)<1, 0<»<d

From Feller (1966), we have

zeLab+1
}. (5.4a)

%20, 0<e<d
Substituting (5.4a) into (2.7) gives
M (7)< Mo(7)+Mo(7)

for 0<a<b. Over part of the range for ¢ and b, the
inequality in (5.4b) can be improved. That is, using
the results

(5.4b)

w—x20, »21, x2>1 5
, (5.5a)
w—x<0, v21, 0<xxX1
we can show that
1< M (D)< M(r), 1<Lab. (5.5b)

Using Schwarz’s integral inequality (von Mises,
1964)

[/ f(x)g(x)p(x)de

< f )P [ PPz, (5.60)

where f, g and p are non-negative, we can prove that
Mo o2(P) S Mao(r)Map(7), 0La<h,  (5.6b)

if f(x)=x2, g(x)=x® and p(x) = f(x,7). The integration
limits in (5.6a) are assumed to be from O to «. Through
the use of mathematical induction, three interesting
special cases of (5.6b) are obtained. They are

Mqa(T) S Mpaq’p('f);

where 0<a< %, ¢< p, and p and ¢ are positive integers;
and

(5.7a)

My o™y (7) S [Mo(7) J& DIz
M @y (1) S Mo @M (7)

where % is a positive integer.

}, (5.7v)
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Inequality (5.6b) can be generalized for integer
indices by using double integrals. If

Pla,y)<Qxy), 0wy, (5.82)
where ¢;; and b;; are constants, and
N N-i
P(x,y)=20 X aiiy’, (5.8b)
=0 j=0
MoM—i
Q(x,y)=Zo 3 byl (5.8¢)
=0 j=0

then

/ / LP(3)— 0ay) ] eyr) Sy, 7)dndy <O, (5.92)
0 0

or
N N—i M M—i
ZO ZO aiM (M) L X byM(r)M;(7). (5.9b)
=0 j= =0 j=0
Now let us consider the kernel given by
afx,y)=(1/2)(x*+y*), p21.  (5.10a)
From the quadratic inequality we have
alx,y) =1/2(x*+y°7) 2 ary?. (5.10b)
Combining (5.10b), (5.5b), (3.2) and (3.3) gives
dM (1)
S —3MAHn)< -4, (5.11a)
dr
Ma(7)
2 M2(r). (5.11b)
r

Solving these differential inequalities results in the
relationships

Myr)S1—17/2, (5.12a)
Ma(n) 3> Mo (5.12b)
T .

? - —Mzo‘r'

The inequalities in (5.12) prove that the moment
M(7) corresponding to (5.10a) becomes zero as fast or
faster than My(7) for a=xy, and the moment M,(r)
approaches infinity as fast or faster than the xy-kernel
case. Hence, we have another indication of the possible
non-applicability for physical problems of kernels
increasing as fast or faster than xy.

In fact, if a kernel corresponding to some physical
process or an approximation to a physical kernel in-
creases as fast or faster than xy for large values of %
and v, then we should be highly suspicious of the deriva-
tion of the kernel or of the{lapproximating technique
being used. In searching the literature we see that this
has not yet been the case for kernels describing physical
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phenomena. For example, the Brownian kernel is
homogeneous of degree zero in x and y (Smoluchowski,
1917); the kernel for coalescence in a laminar shear flow
is homogeneous of degree 1 (Smoluchowski, 1917); for
coalescence in a turbulent diffusion field the degree is 1
(Saffman and Turner, 1956); for turbulent coagulation
under an inertial mechanism the degree is 4/3 (Levich,
1962); and for gravitational coalescence Berry (1967)
used a formula of degree 1, Golovin (1963a) a formula of
degree 5/6, and Enukashvili (1964a) 4/3. Hence, all of
these results are of degree <2 as in the case of a=xy.

6. Similarity solutions vs kernels

The theory of “self-preserving spectra” was intro-
duced by Friedlander (1961) to help explain experi-
mentally observed regularities in certain particle size
distributions of atmospheric aerosols. In Swift and
Friedlander (1964) the theory was developed and tested
experimentally. Friedlander and Wang (1966) and
Wang and Friedlander (1967) refined and extended the
theory. The search for a self-preserving spectrum, as
outlined in the above papers, is really a search for a
similarity solution of (2.6) which satisfies (2.8). A
similarity solution, if it exists, is dependent upon the
collection kernel and the initial spectrum; however, it is
hoped that as 7—>, the actual spectrum approaches
the self-preserving spectrum for any fo(x). This may
be the case for the constant kernel or for a nonconstant,
homogeneous kernel of degree 0 (see the concluding
remarks in Section 3). However, for a=x-+y and a=xy,
this is probably not true.

Friedlander and Wang considered a homogeneous
kernel of degree u, namely,

a(px,py) = pra(x,y). (6.1)

They also derived the similarity transformation
J@,7) =M () (w), (6.2)
n=M(r)x. (6.3)

Combining (2.6), (6.1), (6.2) and (6.3) results in the
ordinary integro-differential equation for ¢ given by

[n%%-&l/}[ / ) [ wa(ﬂ,é)lﬁ(n)xb(é)]dndé

~2 / a(n, W)

- f aln—& DN — (DL (64)

where

/ W (n)dn= / Y(pdn=1. (6.5)
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For a(y,£)=1, (6.4) reduces to (Friedlander and
Wang, 1966)

&y "
e j W~ DD (6.6)
dn o

Through the application of Laplace transforms, the
solution of (6.5) and (6.6) is given by

Y(n)=e, (6.7)

which corresponds to the initial spectrum fo(x)=¢"%.
These authors have also obtained some numerical and
asymptotic results for ¢(y) for the Brownian kernel. It
appears that the “self-preserving spectrum” for the
Brownian kernel, which is homogeneous of degree 0, is
that given in (6.7). In addition, several sets of aerosol
data also tend to lie along the spectrum given by (6.7).
The reason for these last two results and the reason that
Sfo(x) is not too influential for large 7’s may be explained
by the moment results obtained in Section 3. That is,
all integer power moments for the constant kernel are
polynomials in 7 whose leading coefficient is independent
of fo(x). This result may also “carry over” to non-
constant, homogeneous kernels of degree 0.

Suppose we now seek a solution of (6.4) and (6.5)
for the sum kernel, a=§¢-+-9, and further, suppose that
this solution possesses a Laplace transform in the
ordinary sense. Eq. (6.4) reduces to

ay 7
= (1= 1) =3y / Y- (68)
dﬂ 0

If the Laplace transform of ¥(y) is defined by

L) =2(s), (6.9)
then the transform of (6.8) is given by
(®—1-+5)9' =0, (6.10)
The solutions of the transformed equation are
&, =constant
} (6.11)
q)z = 1 —3

Similarly, for the product kernel, a= £y, (6.4) reduces
to

ay 7
e f (=D —W(Dds.  (6.12)
n 0

The Laplace transform of (6.12) is given by

(@) +(2—5)¥+8=0, (6.13)
the solutions of which are
¢1=A (3—2) —AZ
} , (6.14)
@, =1(s—2)?
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where A4 is an arbitrary constant. While the inverse
Laplace transformations of (6.11) and (6.14) are not
defined in the ordinary sense, they do give generalized
functions. Hence, we conclude that the sum and product
kernels do not possess similarity solutions of the form
given in (6.2) and (6.3), and do not have Laplace
transforms in the ordinary sense. From these results
and from the moment inequalities in the previous
section, we conjecture that homogeneous kernels of
degree 21 do not possess similarity solutions of the
type specified in the previous statement. We feel this is
true even though Friedlander and Wang obtained some
numerical and asymptotic results for the ‘“laminar
shear” kernel.

7. The method of moments

Golovin (1963b) and Enukashvili (1964a,b) have
used the method of moments to obtain approximations
for evolving spectra of coalescing cloud droplets in a
rising air stream. The outline of this method for the
system in (2.6) is as follows: Let us suppose we can
develop f(x,7) in a series

Jon) =% Cloisa)n(a), (7.1)

i==0

where ¥, is a set of orthogonal polynomials with respect
to the weight function w(x). Assuming that (7.1) is
valid, the rate of convergence of the series is strongly
dependent upon the unknown weight functions. If one
studies the forms of the exact solutions given in Scott
(1968) for the constant, sum and product kernels, it is
seen that the weight function w(x) is, in turn, highly
dependent upon the kernel of the system. Hence, choices
for w(x) could be based upon the known exact solutions.
In fact, the most rapid convergence will be achieved
when the quantity w(x) is close to the unknown
distribution f(x,7). Hence, it is desirable to find a
“good approximation” to f(x,7) and then use this
approximation for choosing w(x).

If (2.6) is multiplied by %"V and if f(x,7) is replaced
by (7.1), then integrating with respect to x from 0 to «
gives an infinite set of equations in My(7) and Ci(7).
Because of the orthogonality of the polynomials ¢;, the
amplitude functions C,(r) can be written in terms of
the power moments. Orthogonality also guarantees
that the resulting infinite system for the My (7)’s can
be solved inductively. In addition, if the series in (7.1)
is truncated at ¢=1, then the C;(7)’s are all zero for
i>1. That is, there is a closed system for the deter-
mination of the moments My(r); this system is ob-
viously different from that given in (3.3). This new
system for M y(7) does involve certain time-independent
integrals which must be evaluated; and their com-
plexity increases with V.

Even though we have a set of integral power
moments, we do not know that they represent a unique
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solution to the system in question. Hence, we are led
to the “moment problem.” For the evolution of an
aerosol or droplet spectrum the statement of the
moment problem given by Stieltjes (1894, 1895) is the
one of importance. The statement is “find a bounded,
non-decreasing function F(z) in the interval 0 x <
such that its moments have a prescribed set of values

Cn=/ x*dF(x), n=0,1,2,....” (1.2)
0

A detailed discussion of the moment problem of Stieltjes
(SMP) is given in Shohat and Tamorkin (1943).

A sufficient condition that the SMP possesses a
unique solution (Shohat and Tamarkin) is that ¢, or
M () satisfy

0
Z c"_]-/(2ﬂ) =00,

n=1

(7.3)

It can be shown (Drake, 1971) that (7.3) is satisfied for
the kernel given in (3.4).
Eisen (1969) shows that if F is given by

dF = f(x)dx, f(2)20, (7.4)

where

fx)<M|x|* " exp(—b|x|°), for (7.5)

|xi>x0)

and where M, a and & are positive constants and x, is
some predetermined quantity, then function F is unique
if ¢ 4 over the interval (0, ). On the other hand, there
are an infinite number of solutions if for sufficiently
large x, we have

J@)>exp(—blx|),

where 0<¢<3%. The importance of this result is that
(7.5) gives an upper bound for all unique solutions of
(2.6) which possess series expansions of the form given
in (7.1). For example, for proper choices of M, a, & and ¢,
the asymptotic form given in (4.7) is dominated by the
upper bound given in (7.5).

The SMP can be interpreted in the light of the Mellin
transform, (as shown by Sneddon, 1951). Suppose the
sequence {c¢,} is replaced by a moment function ¢(s),
where ¢c(n) =c,1forn=1,2, - - -, The Mellin transform,
¢(s), of the function f(x) is defined by ’

(7.6)

c(s)=/w flx)xrdx. (7.7

If ¢(s) is known, then f(x) can be obtained by applying
the Mellin inversion formula. Stated as a theorem, this
formula is:

“If the integral

f 21| @) | d
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is bounded for some £>0 and if ¢(s) is defined by (7.7),
then

1 a+i0
@) - c(s)x~vds,

e

(7.8)
where a>k."”
The Mellin transform process can be used to obtain

approximations for the solutions of (2.6). As an example,
suppose that fo(x) and a(x,y) are given by

folx)=e2, alx,y)=143 sin(xy).

Thus, candidates for the upper and lower bounds of
dM,(7)/dr, »2> 1, can be obtained by replacing a(x,y) in
(3.1) by 3/2 and 1/2, respectively; that is

(7.9)

L dM,(7)
; / f [(x‘,‘y)"_xv_yv]f(x’-r)f(y, r)dxtly§

T

<3 o[ r— 2 —y I f( Ydxdy. (7.10)
\4/0[) Lty)y —2—y 1 f(x,7) f(y,7)dxdy. (7.

The differential inequalities can be solved if » is replaced
by the positive integers #, and if the initial values of M,
given by

M,,(O)=/ xre*dx=mn!, (7.11)
0

are used. Hence, the corresponding upper and lower
bounds for M ,(7) are given by (see Drake, 1971)

4\ "1 3r+4\ 1

where n=1,2,3, - --.
If we now interpret #» as a continuous variable,

replace # by s—1, and replace #! by TI'(s), the bounds
for ¢(s) are given by

T4\ 2 3r4-4\+2
(——) rwsdﬂsc——) M), (7113)
4 4

where s222. Because of the “—2” in the exponents of
the upper and lower bounds, the inverse Mellin trans-
form of (7.13) gives rational factors in the “upper” and
“lower” bounds for f(x,7) which are actually in the
wrong direction. To correct this, we can rewrite (7.13)
as

2 2 T+4 8 7"+4 s—2
( )( )rws(—~) ) <e(s)
742 4 4

3ra\ "2 2 \Y/3r+4\*
§< ) I‘(s)§< ) <———> Ir(s). (7.14)
4 42 4
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Taking the inverse Mellin transform of the extremes
in (7.14) gives

4

) (-5
+2) N\ e/

2y o 7.15b
U(x’T)_(T+2> exP<—3T+4>’ (7-15b)

where L is the inverse of the extreme left-hand side of
(7.14) and U the inverse of the extreme right side of
(7.14). The ratio of U to L is given by

Ulx,7)
=e
L(x,7)

L(x,7) =( (7.15a)

8xr

Rl Xpl:(r+4)(37—l—4)

]. (7.16)

Hence, R(0,7)=R(x,0)=1, R(w 7r)=0w if 7< o, and
R(x,7)>1 for all + and 7. Therefore, U(x,7)2> L(x,7)
and U and L may be good candidates for the upper and
lower bounds of f(x,7), respectively. At least, U and L
are reasonable approximations to f(x,7), and the ex-
ponential terms in (7.24) give very good bounds for the
asymptotic form of f(x,7). The usefulness of the Mellin
transform in obtaining solutions and bounds for
solutions will be investigated in more detail in a later
paper.

8. Conclusions

The major objective of this paper is to complement
the known analytical results concerned with the pure
coalescence equation. These new results, along with
previously known results, will be of value in the parame-
terization of microphysical processes for large-scale,
three-dimensional cloud models. The system which is
considered here is given in nondimensional form in
(2.6). In the current study special emphasis has been
given to the analysis of the integral power moments of
the size spectrum [see Eq. (2.7)], and the relationship
between these moments and the collection kernel. The
following list of conclusions were obtained from this
study:

1) Using results from Thompson (1968), we derived
a system of ordinary integro-differential equations for
the moments M,(r), »>0. In general, this system of
equations is not a closed system and can not be solved
inductively for the moments.

2) For special cases of the collection kernel and for
integer power moments, this closure problem can be
eliminated. Hence, if a(x,y) is given by (3.4), where 4,
B, C are non-negative constants and max[ 4,B,C]=1,
then all of the integer power moments, Mxy(7),

N=0,1,2,---, can be obtained by solving the above

system inductively.

3) We found that whenever C=0in (3.4), My(7)>0
and approached zero as 7— 4. However, when
C#0, Mi(7)=0 at 7=r1,ax; that is, the coalescence
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process terminates in finite time. In fact, whenever C is
near unity, 7max is near 2; and when C — 0%, 7y0—+ .

4) We also found that whenever C=0, My(r)—+
as 7o, But if C5#0, My(r)—+ as r—r,~. ForC
close to unity, 7, is nearly 1 and as C— 0+, r;—+ .

5) Using realistic numerical values for cloud physics
and conclusions 3) and 4), we found that a==xy, or any
kernel containing an xy term is probably a poor candi-
date for a realistic kernel.

6) The moment M(r) is independent of the initial
spectra only if « is given by (3.4); however, My(r) is
kernel-dependent. The moment M:(7) is equal to unity
for all initial spectra and collection kernels, but the
domain of definition of M;(r) is dependent upon the
kernel, especially for kernels containing xy terms, or
terms which dominate xy.

7) There is a strong indication that as the degree of
homogeneity of the kernel increases, the dependence
of the evolving spectra and their moments upon the
initial spectra becomes more dominant.

8) Analyzing the exact solutions and the asymptotic
forms derived by Scott (1968) for a=xy, we find that
their domain of validity is 0 7<7,< 1. This result is
consistent with the theory of McLeod (1964) and the
moment results obtained in this paper.

9) We considered several families of moment in-
equalities which are useful in deriving various properties
of the solutions to (2.6). Some of the results derived
from these inequalities are certain monotone properties
of M,(r), various upper and lower bounds for M,(r),
and certain relationships between the collection kernels
and the moments. One kernel-dependent result which
is of particular interest is that any kernel increasing as
fast or faster than a=xy is probably a very poor
candidate for known physical processes of coalescence.

10) Friedlander and Wang (1966) considered the
existence of similarity solutions for (2.6) with homoge-
neous collection kernels. From the current study we
-conclude that if the kernel is homogeneous of degree
2 1 there is probably no similarity solutions of the form
specified by Friedlander and Wang.

11) From the known results for the Stieltjes moment
problem we obtained an upper bound for the spectrum
f(x,7). This bound is consistent with the asymptotic
forms of -Scott (1968).

12) Finally, we introduced the idea that the moments
- M,(7) can be interpreted as the Mellin transform of
f(x,7). Two important possibilities arise from this
interpretation. First, for certain kernels we can solve
for the power moments and then take the inverse trans-
form to get the corresponding spectrum. Second, we can
find upper and lower bounds for the moments by solving
differential inequalities and these in turn can-be trans-
formed to give reasonable estimates for the evolving
spectrum f(x,7). It appears that this technique may be
very promising and will be investigated further.
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APPENDIX
List of Symbols

a, A constants

b, B constants

€a, C constants

c(s) moment function

D constant

E normalizing constant

fx,7) dimensionless size spectrum

Solx) dimensionless initial size spectrum
G(s) Laplace transform of f(x)

k constant

K(uw) collection kernel
L(x,7) an approximation of f(x,7)
L[ f(x)] Laplace transform
L[ 1(s)] inverse Laplace transform
M (7) dimensionless integral power moments
of f(x,7)
n, N non-negative integers
n(2,1) particle size density function, size
spectrum
N
< ) binomial coefficients
)
No initial total number of particles
P non-negative integer
Plx,y) polynomial in « and ¥
q non-negative integer
Q(x,y) polynomial in x and y
R(r), R(x,7) ratios of various functions
s transformed variable corresponding to «
t time
%, volume of particles
Ulx,7) an approximation of f{x,7)
) initial mean volume of particles in a cloud
V volume of a segment of a cloud
w(x) weight function
%,y dimensionless particle volumes
a(x,y) dimensionless collection kernel
T'(x) gamma function
8(x) Dirac delta function
] similarity variable
v non-negative constant
£ variable of integration
T dimensionless time
&(s) Laplace transform of ¢
¥(n) self-preserving spectrum
¥ilx) orthogonal polynomials
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