
We now look at the particle from an inertial reference system that is
moving parallel to and with the same speed as the particle in a given instant.
The spatial difference between the two events will in this reference system
of course be zero, and hence the instantaneous speed of the particle will be
zero in this system. Therefore the invariant interval will be ∆s2 = −c2∆τ2,
where ∆τ is the time difference between the two events measured relative to
the reference system instantaneously at rest relative to the particle.

Hence we have that

∆τ = ∆t
√

1− β2, (23)

or

dτ

dt
=
√

1− β2. (24)

This we can integrate, even if u is not a constant speed, and we find that

τB − τA =
∫ tB

tA

√

1− β(t)2dt. (25)

Equation (25) is therefore correct both for motion with constant velocity
and for accelerated motion, and it has been verified in a large number of
experiments, both macroscopic experiments with clocks brought on airplanes
or satellites and elementary particle experiments. We call τ the proper time

of the particle (we easily see that it is a scalar), since it measures time as
a clock traveling together with the particle would do. We see that when
u → c, ∆τ → 0, i.e., a photon is not able to measure time; in its own
reference system time is not moving!

6 Four-velocity and four-acceleration

We see immediately from the formula for addition of velocities (eq. 11) that
ordinary velocity cannot be the spatial part of a four-vector. However, if we
divide the four-vector ∆xµ with the scalar ∆τ , the result must be a four-
vector. The four-vector

Uµ =
dxµ

dτ
=

dt

dτ

dxµ

dt
= γ(u)(c, ux, uy, uz) = γ(u)(c,u), (26)
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we call the four-velocity. Here u is the velocity of our particle relative to
our inertial reference system. We see that for small velocities, the spatial part
of the four-velocity is the ordinary velocity while the temporal component
is the speed of light. In an inertial system which is instantaneously at rest
with respect to the particle, we see that the four-velocity is (c, 0, 0, 0). Hence
the scalar −U2

0 + UiUi = −c2 always for all particles in all inertial reference
frames.

Now, let us introduce a new four-vector, the four-acceleration, the four-
velocity differentiated with respect to the proper time (since we again in
principle divide a four vector by a scalar, the result must be a four-vector),

Aµ =
dUµ

dτ
=

dt

dτ

dUµ

dt
= γ(u)

d

dt
(cγ(u), γ(u)u). (27)

If we introduce the ordinary acceleration, a = du/dt, we see that

dγ

dt
=

1

2c2
γ3 d

dt
(u · u) =

γ3

c2
u · a. (28)

We then have that

Aµ = γ(u)

(

γ3

c
u · a, γa +

γ3

c2
(u · a)u

)

. (29)

Now, using the well known vector relation

(u · a)u = u× (u× a) + (u · u)a, (30)

we find that the four-acceleration can be written as

Aµ = γ4
(

~β · a, a + ~β × (~β × a)
)

. (31)

By doing some algebra, we find that the scalar AµAµ is given by

AµAµ = −A0A0 + AiAi = γ6
(

a2 − (~β × a)2
)

, (32)

which therefore is the same in all inertial reference systems. In a system
instantaneously at rest with respect to the particle, u = 0 and a = a0. In
this frame, the four-acceleration is (0, a0), and hence we see that

AµAµ = −A0A0 + AiAi = a2
0. (33)
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We see immediately that the Lorentz invariant scalar product of the four-
velocity and the four-acceleration is zero in the frame instantaneously at rest
with respect to the particle, and hence it is always zero, i.e.,

AµUµ = −A0U0 + AiUi = 0. (34)

Let us now look at a particle, e.g., a rocket, starting at rest in the origin
of one inertial reference system and being constantly accelerated along the
x-axis at every instant with a constant acceleration g with respect to an
inertial reference frame instantly at rest with respect to the particle. In our
original reference frame, we then have that AµAµ = γ6a2 = a2

0 = g2, i.e.,

γ3du

dt
= g. (35)

But from equation (28) we see that

d

dt
(γu) = γ

du

dt
+ u

dγ

dt
= γ3du

dt

(

γ−2 +
u2

c2

)

= γ3du

dt
. (36)

Therefore

d

dt

u
√

1− u2

c2

= g, (37)

which by integration gives

u =
dx

dt
=

gt
√

1 + g2t2

c2

(38)

and

x =
c2

g

∫ gt/c

0

xdx√
1 + x2

=
c2

g

√

1 +
g2t2

c2
−

c2

g
. (39)

Then we have that

(

x +
c2

g

)2

− c2t2 =
c4

g2
, (40)

which is the equation for a hyperbola in the ct-x plane. In special rela-
tivity such motion with constant acceleration (defined relative to the instan-
taneous inertial reference frame) is called hyperbolic motion. We see that for
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