6 Four-velocity and four-acceleration

We see immediately from the formula for addition of velocities (eq. 11) that
ordinary velocity cannot be the spatial part of a four-vector. However, if we
divide the four-vector Az, with the scalar A7, the result must be a four-
vector. The four-vector

_ do, _ dtdu,

T dr T dr dt ZV(U)(Cvuzauyau»:7<u)(cvu)7 (26)
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we call the four-velocity. Here u is the velocity of our particle relative to
our inertial reference system. We see that for small velocities, the spatial part
of the four-velocity is the ordinary velocity while the temporal component
is the speed of light. In an inertial system which is instantaneously at rest
with respect to the particle, we see that the four-velocity is (¢, 0,0, 0). Hence
the scalar —UZ + U;U; = —c? always for all particles in all inertial reference
frames.

Now, let us introduce a new four-vector, the four-acceleration, the four-
velocity differentiated with respect to the proper time (since we again in
principle divide a four vector by a scalar, the result must be a four-vector),

_du, dtdU, d
Ay =— = = =) (e (u), v (uu). (27)
If we introduce the ordinary acceleration, a = du/dt, we see that
dy - L 4 d . 73
at 22" dt (u-u) = 2t (28)
We then have that
7 7
A, =7(u) <?u -a,vya+ C—2(u : a)u) . (29)

Now, using the well known vector relation

(u-a)Ju=ux (uxa)+(u-ua, (30)

we find that the four-acceleration can be written as

A=A (Fraa+fx (Gxa). (31)
By doing some algebra, we find that the scalar A*A, is given by

A“AH = —A()AO + AZAZ = ’}/6 (a2 — (ﬁ X a)2) , (32)

which therefore is the same in all inertial reference systems. In a system
instantaneously at rest with respect to the particle, u = 0 and a = ag. In
this frame, the four-acceleration is (0, a), and hence we see that

AuAu = —A()A() + AZAZ = CL%. (33)
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We see immediately that the Lorentz invariant scalar product of the four-
velocity and the four-acceleration is zero in the frame instantaneously at rest
with respect to the particle, and hence it is always zero, i.e.,

APU, = — AUy + AU; = 0. (34)

Let us now look at a particle, e.g., a rocket, starting at rest in the origin
of one inertial reference system and being constantly accelerated along the
r-axis at every instant with a constant acceleration g with respect to an
inertial reference frame instantly at rest with respect to the particle. In our
original reference frame, we then have that A*A, = 1%a? = a} = ¢ i.e.,

du
3— —
V=Y (35)
But from equation (28) we see that
d dudy gdu( _, w?\  gdu
a0 =g g = t(7 e a (36)
Therefore
d u
S S — 37

which by integration gives

dx gt
= — = —— 38
YTat T iee (38)
and
2 rgt/c d 2 242 2
xzc_/ _var o« 1+9_2_C_. (39)
g Jo 1+ a2 g c g
Then we have that
c2>2 - A
r+—| —ctT=—, 40
( g g* (40)

which is the equation for a hyperbola in the ct-z plane. In special rela-
tivity such motion with constant acceleration (defined relative to the instan-
taneous inertial reference frame) is called hyperbolic motion. We see that for
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