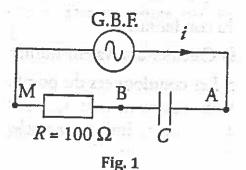
Nous innovons pour votre réussile!

ECOLE D'INGENIERIE

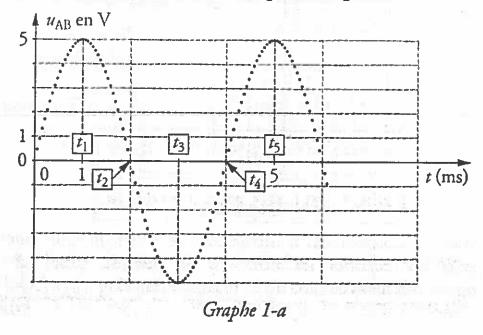

CONCOURS D'ADMISSION AUX CLASSES PREPARATOIRES INTEGREES SESSION DU 10 MAI 2014

EPREUVE DE PHYSIQUE DUREE 2H

Électricité

Exercice 1

On réalise le montage ci-dessous.


Le générateur basse fréquence (G.B.F.) délivre une tension sinusoïdale de fréquence 250 Hz et d'amplitude voisine de 5 V. On visualise à l'oscilloscope, sur la voie 1, l'évolution au cours du temps de la tension $u_1 = u_{AM}(t)$ et, sur la voie 2, l'évolution au cours du temps de la tension $u_2 = u_{BM}(t)$. Le sens de i choisi comme sens positif est indiqué sur le schéma.

- 1) Exprimer la tension u_{AB} en fonction de u₁ et u₂ en précisant la loi utilisée.
- 2) On remplace l'oscilloscope par un dispositif d'acquisition relié à un ordinateur qui suit l'évolution des tensions u_1 et u_2 au cours du temps. Un logiciel adapté effectue les calculs et les représentations graphiques souhaités. Le graphe 1-a représente l'évolution de u_{AB} au cours de la durée t.

UNIVERSITÉ INTERNATIONALE DE CASABLANCA

Nous innovans paur votre réussite!

Graphes relatifs à la première partie

En utilisant ce graphe:

- donner le signe de la charge q_A portée par l'armature A aux instants de dates t_1 et t_3 ;

- préciser deux intervalles de temps entre les instants de dates t₁ et t₅ pendant lesquels le condensateur se charge. On admettra ici que le condensateur se charge lorsque la valeur absolue de q_A croît en fonction du temps.

3) L'intensité i est égale à la dérivée par rapport au temps de la charge q, portée par l'armature A :

$$i = \frac{d(q_A)}{dt}$$
 on pose $u_{AB} = \frac{d(u_{AB})}{dt}$. Établir la relation $i = Cu_{AB}$

4) En déduire le signe de i entre les instants de dates t₁ et t₃. Justifier.

5) La mesure de u_2 et les données introductives permettent le calcul de i. Préciser pourquoi.

UNIVERSITÉ INTERNATIONALE DE CASABLANCA

Nous innovons pour votre réussite !

Mécanique

Exercice 2

Un point matériel M, de masse m est lancé à l'instant $t_0 = 0$, du point d'origine O d'un repère orthonormé $R_0(\vec{x}, \vec{y}, \vec{z})$ avec une vitesse initiale $\vec{v_0}$, faisant un angle α avec l'axe horizontale \vec{Ox} . L'axe \vec{Oz} est vertical ascendant (figure 2.1)

1. Déterminer les composantes du vecteur vitesse initial $\overrightarrow{v_0}$

2. On suppose l'accélération de la pesanteur g constante et tout frottement est négligeable.

 i) Du principe fondamental de la dynamique appliquée au point M dans son mouvement par rapport à R₀, montrer qu'on peut obtenir les équations différentielles suivantes :

$$\ddot{x}=0$$
;

$$\ddot{y} = 0$$
;

$$\ddot{z} = -g$$

- ii) A partir des conditions initiales ($t_0 = 0$) et de la résolution des équations ci-dessus, Déterminer les équations du mouvement x(t), y(t) et z(t) du point M par rapport à R_0 .
- iii) En déduire la nature de la trajectoire du point M dans son mouvement par rapport à R₀ en déterminant son équation.
- iv) Au point S, sommet de la trajectoire, la vitesse du point M est nulle, déterminer les composantes du point M en ce point.
- v) En déduire la portée du point M. Pour quelle valeur de α cette portée sera-t-elle maximale ?
- 3. La résistance \vec{R} de l'aire n'est plus nulle, on la suppose de type visqueux : $\vec{R} = -\lambda \vec{v}$, λ constante positive.
 - (a) Du principe fondamentale de la dynamique appliqué au point M, montrer que le vecteur vitesse du M est donné par :

$$\vec{v} = \frac{m\vec{g}}{\lambda} + \vec{A}e^{-\lambda j/m}$$

(b) A partir des conditions initiales, donner l'expression du vecteur \bar{A} et montrer que :

$$\vec{v} = \frac{m\vec{g}}{\lambda} + (\vec{v}_0 - m\frac{\vec{g}}{\lambda}e^{-\lambda t_m})$$

UNIVERSITÉ INTERNATIONALE DE CASABLANCA

Nous innovans pour votre réussite !

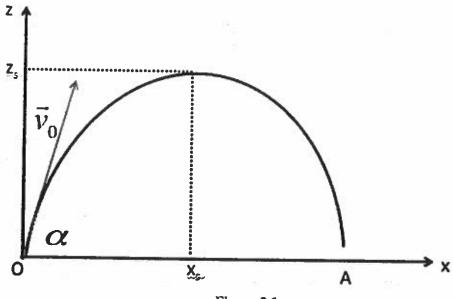


Figure 2.1