THEORIE DE JAUGES

Nous allons voir maintenant une approche simple d'un outil qui a révolutionne I'approche de la
physique moderne des particules au milieu du 20°™ siécle et qui a valu plusieurs prix Nobel a
ceux qui y ont contribué.

Nous conseillons trés fortement avant de lire ce qui va suivre que le lecteur aille jeter aussi un
coup d'ceil au préalable sur le sous-chapitre de théorie des Jauges du chapitre d'électrodynamique
car c'est un premier exemple d'une invariance de jauge faisant apparaitre un champ (le potentiel
vecteur) indispensable pour expliquer certains phénomenes a I'échelle quantique comme l'explicite
clairement I'équation de Pauli (cf. chapitre de Physique Quantique Relativiste).

Depuis le début des années 80, les magazines de vulgarisation parlent beaucoup en physique
quantique des théories de jauge. Les interactions électromagnétiques et les interactions faibles sont
décrites conjointement par une théorie de jauge élaborée par Glashow, Weinberg et Salam. Les
interactions fortes semblent aussi correctement décrites par une théorie de jauge. C'est dans le
cadre de ces théories de jauge que les physiciens théoriciens tentent d'unifier les diverses
interactions fondamentales de la nature. Il convient donc, méme dans un site qui traite de maniere
élémentaire de physique quantique, de parler de théorie de jauge dans le cadre de ce domaine.

Les concepts qui seront développés dans la présente discussion forme autour de quatre sujets
principaux dans le but de mettre en valeur un contexte tant historique qu'expérimental, c'est-a-dire
de présenter les théories, les fondements, ainsi que les appareils dont le développement a
contribué, de pres ou de loin, a construire un cadre a l'intérieur duquel il serait possible de
postuler, puis éventuellement de fournir une preuve de I'existence des bosons faibles.

Pour ce faire, nous considérerons déja comme connu le contexte qui mena a la découverte de
I'invariance de jauge dans le cadre de I'électrodynamique (voir chapitre du méme nom pour les
détails) et ferons un rapprochement avec certains développements vus dans le chapitre de
Relativité Générale et le réle qu'a joué Weyl dans la mise en évidence des principes fondamentaux
d'une théorie de jauge.

Nous aborderons ensuite la théorie de Yang-Mills pour souligner son importance au niveau
conceptuel, puis nous décrirons la contribution de Fermi par le biais de la théorie des interactions
faibles en mentionnant les limites lui étant inhérentes. Cela nous aménera a présenter une
approche plus quantitative de certains aspects d'une théorie de jauge, tout en mettant I'emphase
sur I'importance du mécanisme de brisure de symétrie spontanée de Higgs relativement a la théorie
unifiée de Weinberg-Salam.

Rappelons que la relativité restreinte et générale reposent sur le postulant qu'il n'existe dans
I'univers aucun référentiel absolu. Nous avons vu dans le chapitre de Relativité Restreinte en long
et en large que les relations qui permettent de passer les lois de la physique d'un repére a l'autre ne
dépendent que da la vitesse relative entre les référentiels. Ainsi, la relativité restreinte est une
théorie a symétrie globale. Nous avons également vu en long et en large dans le chapitre de
Relativité Générale que la connexion affine est le lien entre les reférentiels de la théorie locale
(approximation des champs faibles) qu'est la relativité générale.

En 1919 eut lieu la premiére observation expérimentale de la déviation de la lumiere d'une étoile
par le champ gravitationnel du Soleil. Cette confirmation spectaculaire de la théorie de la relativité



générale inspira Hermann Weyl, qui proposa la méme année une conception révolutionnaire de
I'invariance de jauge: Si les effets d'un champ gravitationnel peuvent étre décrits par une
connexion exprimant l'orientation relative entre des référentiels locaux de I'espace-temps, d'autres
forces de la nature telles-que I'électromagnétisme peuvent-elles étre associées aussi a des
connexions similaires?

Nous considérons deux types de symétrie de jauge: I'une dite "jauge globale™ et l'autre dite "jauge
locale". Elles se distinguent par le parametre caractérisant le changement de phase de la fonction
d'onde (nous verrons cela en détails un peu plus loin).

INVARIANCE DE JAUGE GLOBALE

Nous allons donc étudier I'invariance de jauge a partir de I'équation de Schrédinger et montrer que
méme si les résultats peuvent paraitre déroutants (dans le cadre d'applications complexes) il n'en
restent pas moins mathématiquement tout a fait corrects.

Considérons donc I'équation de Schrodinger:
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avec comme nous l'avons montré:
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avec ¥ = Y¥(r,t). Soit dans le cas d'une particule libre:
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Cette équation est manifestement invariante dans la transformation qui fait passer de ¥ a ¥
avec:

Y=gty = =g 9Ny
ou g est une constante de couplage (pour assurer I'nomogénéité des unités et I'amplitude) étant

considérée comme un nombre réel et « un parameétre réel indépendant des coordonnées (dans un
premier temps...) d'espace et de temps.
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devient:
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et comme « ne dépend ni de x,y,z,t alors:
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Soit aprés simplification:
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La forme de I'équation est restée la méme lorsque nous avons fait le changement de W en ¥'.

Ainsi, la description d'un systéme libre n'est pas affectée par le changement de phase globale. En
langage de la théorie des groupes (cf. chapitre d'Algebre Ensembliste), nous parlons d'invariance
sous le groupe U(1) des phases.

INVARIANCE DE JAUGE LOCALE

Mais mais... soit I'invariance de jauge globale montre que nous avons une équation qui reste
valable dans le cadre d'un changement de phase fixe. Mais maintenant dans un laboratoire cette
équation de Schrodinger doit étre valable méme si la phase dépend de la position et de du temps.
Cette contrainte s'appelle une "invariance locale".

Nous considérons ainsi que « est une fonction «(r,t) et I'idée bien évidemment est de vérifier si
I'équation de Schrodinger reste invariante dans la transformation:
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Il est dés lors évident que I'équation de Shrédinger:
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n'est plus invariante. Effectivement nous voyons rapidement que rien que l'opérateur V2 dans
I'namiltonien va poser probleme en faisant apparaitre des termes génants qui ne s'annuleront pas:
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Pour contourner ce probleme nous introduisons le champ de force associé au potentiel vecteur et
au potentiel électrique et nous verrons qu'il garantit I'invariance locale (dons il est impossible de
différencier un changement de phase de la présence d'un champ de force de ce type). Donc
I'invariance locale impose que la particule ne soit plus libre (il n'existe donc pas de particules
chargées libres!).



Pour cela reprenons I'hamiltonien de I'équation de Pauli (cf. chapitre de Physique Quantique

Relativiste):
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et négligeons l'interaction entre le spin et le champ magnétique tel que I'hamiltonien devienne

Soit:
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Nous avons donc I'équation de Schrédinger suivante:
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Ce qui par rapport a I'équation de Schrodinger libre:
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fait intervenir les correspondances suivantes:

Considérons la transformation de jauge (cf. chapitre d'Electrodynamique) en notant dorénavant le

potentiel électrique par la lettre V :
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ou f = f(F,1).



D'abord, nous voyons alors immédiatement que les opérateurs sont invariants. Effectivement:
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Or, si g est posé comme étant q/# et f comme étant « alors nous avons:
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La relation:

devient alors avec les nouvelles correspondances:
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et avec les développements antérieurs nous avons donc:
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Ce qui donne apres simplification:
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Ainsi, en demandant I'invariance de jauge nous avons fait apparaitre une interaction... et nous
savons bien qu'elle est cette interaction!

L'équation de Schrodinger d'une particule se déplacant dans un champ électromagnétique est donc
invariante sous la transformation locale de phase. La phase d'une fonction d'onde est bel et bien
une nouvelle variable locale au sens de Weyl et le potentiel électromagnétique peut étre interprété,
suivant Weyl, comme une connexion reliant les phases en différents points.

Nous en concluons que le champ électromagnétique est une conséquence de l'invariance de jauge
locale fondée sur le groupe U(1), groupe des matrices unitaires a une dimension (cf. chapitre
d'Algebre ensembliste). L'intérét qui existe est de construire des théories de jauge sur des groupes
plus compliquées (non-abéliens): ces théories sont appelées "théories de Yang-Mills".

Maintenant allons un tout petit peu plus loin mais sans trop approfondir... Nous avons montré
dans le chapitre de physique quantique des champs que le lagrangien de I'équation de Dirac libre
était:
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Or, cette équation ne faisant pas apparaitre le champ électromagnétique on se doute tres fortement
qu'elle n'est pas invariante a une jauge locale...

Or, I'équivalent de I'opérateur divergence V dans I'équation de Schrédinger libre est la dérivée
covariante 9, . Donc au méme titre que nous avons associée pour l'invariance locale de jauge de

I'équation de Schrodinger libre:
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Le langrangien de I'équation de Dirac libre s'écrirait alors:
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Il ne reste plus qu'a rajouter le terme du champ pour et nous avons le lagrangien total de I'équation
de Dirac (cela aurait été relativement dur de le trouver d'une autre maniere...):



