
 
THÉORIE DE JAUGES 
 
Nous allons voir maintenant une approche simple d'un outil qui a révolutionné l'approche de la 
physique moderne des particules au milieu du 20ème siècle et qui a valu plusieurs prix Nobel a 
ceux qui y ont contribué. 
 
Nous conseillons très fortement avant de lire ce qui va suivre que le lecteur aille jeter aussi un 
coup d'œil au préalable sur le sous-chapitre de théorie des Jauges du chapitre d'électrodynamique 
car c'est un premier exemple d'une invariance de jauge faisant apparaître un champ (le potentiel 
vecteur) indispensable pour expliquer certains phénomènes à l'échelle quantique comme l'explicite 
clairement l'équation de Pauli (cf. chapitre de Physique Quantique Relativiste). 
 
Depuis le début des années 80, les magazines de vulgarisation parlent beaucoup en physique 
quantique des théories de jauge. Les interactions électromagnétiques et les interactions faibles sont 
décrites conjointement par une théorie de jauge élaborée par Glashow, Weinberg et Salam. Les 
interactions fortes semblent aussi correctement décrites par une théorie de jauge. C'est dans le 
cadre de ces théories de jauge que les physiciens théoriciens tentent d'unifier les diverses 
interactions fondamentales de la nature. Il convient donc, même dans un site qui traite de manière 
élémentaire de physique quantique, de parler de théorie de jauge dans le cadre de ce domaine. 
 
Les concepts qui seront développés dans la présente discussion forme autour de quatre sujets 
principaux dans le but de mettre en valeur un contexte tant historique qu'expérimental, c'est-à-dire 
de présenter les théories, les fondements, ainsi que les appareils dont le développement a 
contribué, de près ou de loin, à construire un cadre à l'intérieur duquel il serait possible de 
postuler, puis éventuellement de fournir une preuve de l'existence des bosons faibles. 
 
Pour ce faire, nous considérerons déjà comme connu le contexte qui mena à la découverte de 
l'invariance de jauge dans le cadre de l'électrodynamique (voir chapitre du même nom pour les 
détails) et ferons un rapprochement avec certains développements vus dans le chapitre de 
Relativité Générale et le rôle qu'a joué Weyl dans la mise en évidence des principes fondamentaux 
d'une théorie de jauge. 
 
Nous aborderons ensuite la théorie de Yang-Mills pour souligner son importance au niveau 
conceptuel, puis nous décrirons la contribution de Fermi par le biais de la théorie des interactions 
faibles en mentionnant les limites lui étant inhérentes. Cela nous amènera à présenter une 
approche plus quantitative  de certains aspects d'une théorie de jauge, tout en mettant l'emphase 
sur l'importance du mécanisme de brisure de symétrie spontanée de Higgs relativement à la théorie 
unifiée de Weinberg-Salam.  
 
Rappelons que la relativité restreinte et générale reposent sur le postulant qu'il n'existe dans 
l'univers aucun référentiel absolu. Nous avons vu dans le chapitre de Relativité Restreinte en long 
et en large que les relations qui permettent de passer les lois de la physique d'un repère à l'autre ne 
dépendent que da la vitesse relative entre les référentiels. Ainsi, la relativité restreinte est une 
théorie à symétrie globale. Nous avons également vu en long et en large dans le chapitre de 
Relativité Générale que la connexion affine est le lien entre les référentiels de la théorie locale 
(approximation des champs faibles) qu'est la relativité générale. 
 
En 1919 eut lieu la première observation expérimentale de la déviation de la lumière d'une étoile 
par le champ gravitationnel du Soleil. Cette confirmation spectaculaire de la théorie de la relativité 



générale inspira Hermann Weyl, qui proposa la même année une conception révolutionnaire de 
l'invariance de jauge: Si les effets d'un champ gravitationnel peuvent être décrits par une 
connexion exprimant l'orientation relative entre des référentiels locaux de l'espace-temps, d'autres 
forces de la nature telles-que l'électromagnétisme peuvent-elles être associées aussi à des 
connexions similaires? 
 
Nous considérons deux types de symétrie de jauge: l'une dite "jauge globale" et l'autre dite "jauge 
locale". Elles se distinguent par le paramètre caractérisant le changement de phase de la fonction 
d'onde (nous verrons cela en détails un peu plus loin). 
 
INVARIANCE DE JAUGE GLOBALE 
 
Nous allons donc étudier l'invariance de jauge à partir de l'équation de Schrödinger et montrer que 
même si les résultats peuvent paraître déroutants (dans le cadre d'applications complexes) il n'en 
restent pas moins mathématiquement tout à fait corrects. 
 
Considérons donc l'équation de Schrödinger: 
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avec comme nous l'avons montré: 
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avec ( , )r tΨ = Ψ . Soit dans le cas d'une particule libre: 
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Cette équation est manifestement invariante dans la transformation qui fait passer de Ψ  à 'Ψ  
avec: 
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où g est une constante de couplage (pour assurer l'homogénéité des unités et l'amplitude) étant 
considérée comme un nombre réel et α  un paramètre réel indépendant des coordonnées (dans un 
premier temps…) d'espace et de temps. 
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devient: 
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et comme α  ne dépend ni de , , ,x y z t  alors: 
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Soit après simplification: 
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La forme de l'équation est restée la même lorsque nous avons fait le changement de Ψ  en 'Ψ . 
 
Ainsi, la description d'un système libre n'est pas affectée par le changement de phase globale. En 
langage de la théorie des groupes (cf. chapitre d'Algèbre Ensembliste), nous parlons d'invariance 
sous le groupe U(1) des phases.  

 
 
INVARIANCE DE JAUGE LOCALE 
 
Mais mais… soit l'invariance de jauge globale montre que nous avons une équation qui reste 
valable dans le cadre d'un changement de phase fixe. Mais maintenant dans un laboratoire cette 
équation de Schrödinger doit être valable même si la phase dépend de la position et de du temps. 
Cette contrainte s'appelle une "invariance locale". 
 
Nous considérons ainsi que α  est une fonction ( , )r tα  et l'idée bien évidemment est de vérifier si 
l'équation de Schrödinger reste invariante dans la transformation: 
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Il est dès lors évident que l'équation de Shrödinger: 
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n'est plus invariante. Effectivement nous voyons rapidement que rien que l'opérateur 2∇  dans 
l'hamiltonien va poser problème en faisant apparaître des termes gênants qui ne s'annuleront pas: 
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Pour contourner ce problème nous introduisons le champ de force associé au potentiel vecteur et 
au potentiel électrique et nous verrons qu'il garantit l'invariance locale (dons il est impossible de 
différencier un changement de phase de la présence d'un champ de force de ce type). Donc 
l'invariance locale impose que la particule ne soit plus libre (il n'existe donc pas de particules 
chargées libres!). 



 
Pour cela reprenons l'hamiltonien de l'équation de Pauli (cf. chapitre de Physique Quantique 
Relativiste): 
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et négligeons l'interaction entre le spin et le champ magnétique tel que l'hamiltonien devienne: 
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Soit: 
 

( )2

02

i qA
qU

m

− ∇ −
+  

 
Nous avons donc l'équation de Schrödinger suivante: 
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Ce qui par rapport à l'équation de Schrödinger libre: 
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fait intervenir les correspondances suivantes: 
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Considérons la transformation de jauge (cf. chapitre d'Électrodynamique) en notant dorénavant le 
potentiel électrique par la lettre V : 
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D'abord, nous voyons alors immédiatement que les opérateurs sont invariants. Effectivement: 
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Or, si g est posé comme étant  /q  et f comme étant α  alors nous avons: 
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Soit tout simplement: 
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De même en sachant maintenant que f est α : 
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Nous avons donc: 
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Soit: 
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La relation: 
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devient alors avec les nouvelles correspondances: 
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et avec les développements antérieurs nous avons donc: 
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Soit: 
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Ce qui donne après simplification: 
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Ainsi, en demandant l'invariance de jauge nous avons fait apparaître une interaction… et nous 
savons bien qu'elle est cette interaction! 
 
L'équation de Schrödinger d'une particule se déplaçant dans un champ électromagnétique est donc 
invariante sous la transformation locale de phase. La phase d'une fonction d'onde est bel et bien 
une nouvelle variable locale au sens de Weyl et le potentiel électromagnétique peut être interprété, 
suivant Weyl, comme une connexion reliant les phases en différents points. 
 
Nous en concluons que le champ électromagnétique est une conséquence de l'invariance de jauge 
locale fondée sur le groupe U(1), groupe des matrices unitaires à une dimension (cf. chapitre 
d'Algèbre ensembliste). L'intérêt qui existe est de construire des théories de jauge sur des groupes 
plus compliquées (non-abéliens): ces théories sont appelées "théories de Yang-Mills". 
 
Maintenant allons un tout petit peu plus loin mais sans trop approfondir… Nous avons montré 
dans le chapitre de physique quantique des champs que le lagrangien de l'équation de Dirac libre 
était: 
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Or, cette équation ne faisant pas apparaître le champ électromagnétique on se doute très fortement 
qu'elle n'est pas invariante à une jauge locale… 
 
Or, l'équivalent de l'opérateur divergence ∇  dans l'équation de Schrödinger libre est la dérivée 
covariante µ∂  . Donc au même titre que nous avons associé pour l'invariance locale de jauge de 
l'équation de Schrödinger libre: 
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Il est tentant de combiner le tout en un nouvel opérateur: 
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avec : 
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Le langrangien de l'équation de Dirac libre s'écrirait alors: 
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avec: 
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Il ne reste plus qu'à rajouter le terme du champ pour et nous avons le lagrangien total de l'équation 
de Dirac (cela aurait été relativement dur de le trouver d'une autre manière…): 
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