
TP : CERCLE DE MOHR 

 

1- ETAT DE CONTRAINTE PLANE : Rappel de cours 

Soit un élément plan soumis aux contraintes ��, �� et ���dans le plan ��, �, 	
. Le tenseur des 

contraintes s’écrit dans ces conditions : 

�� � 
 �� ������ �� � 

Illustrons cela par un dessin : Représentons tout d’abord l’élément avec son système d’axe ��, �, 	
 et 

ses vecteurs ���, ��
de la base. 

 

 

 

 

 

 

 

Sur la face de surface S et de normale ��  (Face de droite), on a le vecteur contrainte définit par 

��� � 
 �� ������ �� � 
10� � 
 ������ 

La composante normale sur cette face est donnée par : ���. ��	� �� 

La composante normale sur cette face est donnée par : ���. ��	� ��� 

Soit graphiquement :  

 

 

 

 

 

 

Sur la face de surface S et de normale ���  (Face de gauche), on a le vecteur contrainte définit par 

��� � 
 �� ������ �� � 
�10 � � 
�������� 

La composante normale sur cette face est donnée par : ���. ��	� ��� 

La composante normale sur cette face est donnée par : ���. ��	� ���� 
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Soit graphiquement :  

 

 

 

 

 

 

 

Sur la face de surface S et de normale ��  (Face du haut), on a le vecteur contrainte définit par 

��� � 
 �� ������ �� � 
01� � 
����� � 

La composante normale sur cette face est donnée par : ���. ��	� ��� 

La composante normale sur cette face est donnée par : ���. ��	� �� 

Soit graphiquement :  

 

 

 

 

 

 

 

Sur la face de surface S et de normale ���  (Face du bas), on a le vecteur contrainte définit par 

��� � 
 �� ������ �� � 
 0�1� � 
������� � 

La composante normale sur cette face est donnée par : ���. ��	� ���� 

La composante normale sur cette face est donnée par : ���. ��	� ��� 
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Soit graphiquement :  

 

 

 

 

 

 

 

 

 

 

D’où finalement, la répartition des contraintes sur toutes les faces : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

� 

	 

� �� �� 

�� 

��� 

� 

	 

� �� �� 

�� 

��� 

�� ��� �� 

��� 

�� 

��� 



2- UN EXEMPLE SIMPLE : TRACTION 

Reprenons notre élément plan. Le tenseur des contraintes s’écrit dans ce cas 

�� � 
�� 00 0� 

 

 

 

 

 

 

 

 

 

Et si l’une des deux facettes n’étaient pas orienté suivant l’un des axes du plan définit par le 

repère��, �, 	
. 

 

Regardons le cas de figure suivant toujours dans l’exemple de la traction simple 

 

 

 

 

 

 

 

 

En utilisant l’angle �, on pourrait simplement écrire : 

�cos� � �#��sin � � �#��
 

D’où  

&�# � ��cos��# � �� sin� 
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En fait ce résultat n’est pas correct car la contrainte �� s’exerce à droite sur une surface  ) et à gauche 

sur une surface )∗ plus grande. Pour avoir l’équilibre des forces, on écrit donc : 
*cos � � +,-∗./-sin � � .,-∗./-   Soit *�# � ��cos � --∗�# � �� sin � --∗ 

Par construction géométrique, on a  
--∗ � sin �, d’où : 

&�# � �� sin² �       �# � ��cos � sin � 

 

Les relations trigonométriques donnent : 

sin² � � 12345 6#6  et cos � sin � � 7896#6  

En reportant cela dans les composantes du vecteur contrainte : 

��# � ��2 �1 � cos 2�

�# � ��2 sin 2�             

Interprétation : 

 

 

 

 

 

 

 



3- UN AUTRE EXEMPLE SIMPLE : TRACTION+CISAILLEMENT 

Reprenons le cas général d’un tenseur des contraintes  �� � 
 �� ������ �� � 

On a donc, la configuration suivante en termes de contrainte sur les 4 faces de l’élément 

 

 

 

 

 

 

 

 

 

 

 

Imaginons cette fois comme précédemment, que l’élément ai la forme suivante : 

 

 

 

 

 

 

 

 

 

 

Essayons d’exprimer les vecteurs contraintes �#, �# en fonction des contraintes  ��, ��et ���. 

Appliquons l’équilibre des forces dans le repère �;, <
. 
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Suivant l’axe ;, on peut écrire : 

 

 

 

 

 

 

 

 

 �#)∗ = >���)1 = ��)6? cos � � >���)6 = ��)1? sin� � 0 

Suivant l’axe <, on peut écrire : 

 

 

 

 

 

 

 

 

 �#)∗ � >���)1 = ��)6? sin� � >���)6 = ��)1? cos � � 0 

 

En rassemblant les deux équations précédentes, on a : 

@�#)∗ � >���)1 = ��)6? sin� = >���)6 = ��)1? cos�								�#)∗ � �>���)1 = ��)6? cos � = >���)6 = ��)1? sin �			 
Tout d’abord, peu indiquer que la surface inclinée est plus grande que les deux faces à gauche et en 

bas. 

-A-∗ � cos� et 
-B-∗ � sin � 

D’où,  
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@ �# � >��� cos � + �� sin �? sin � + >��� sin � + �� cos �? cos �      �# = −>��� cos � + �� sin �? cos � + >��� sin � + �� cos �? sin �     
En regroupant, les fonctions trigonométriques, on obtient : 

@�# = �� cos6 � + �� sin6 � + 2��� cos � sin �              �# = >�� − ��? cos � sin � + �sin² � − cos² �
���     
 

Les relations trigonométriques donnent : 

cos² � = 1E345 6#6  , sin² � = 12345 6#6  et  cos � sin � = 7896#6  

 

� �# = �� 1 + cos 2�2 + �� 1 − cos 2�2 + 2��� FGH2�2              
 �# = >�� − ��? FGH2�2 + I1 − cos 2�2 − 1 + cos 2�2 J ���     

Soit : 

��# = I�� + ��2 J + 
�� − ��2 � cos 2� + ���FGH2�
 �# = 
�� − ��2 � FGH2� − ��� cos 2�                        

 

 

4- CERCLE DE MOHR : Formalisme 

On reprend le dernier système d’équation : 

��# = I�� + ��2 J + 
�� − ��2 � cos 2� + ���FGH2�
 �# = 
�� − ��2 � FGH2� − ��� cos 2�                        

 

On peut remarquer que ces deux équations représentent un cercle dans le système d’axe �;, <
. En 

effet, on peut écrire : 

��# − I�� + ��2 J = 
�� − ��2 � cos 2� + ���FGH2�
 �# = 
�� − ��2 � FGH2� − ��� cos 2�                        

En faisant le calcul suivant I�# − 
./E.K6 �J6 + �#6, on obtient : 

L�# − I�� + ��2 JM6 + �#6 = L
�� − ��2 � cos 2� + ���FGH2�M6 + L
�� − ��2 � FGH2� − ��� cos 2�M6
 

 



Soit : 

L�# � I�� = ��2 JM6 = �#6
� 
�� � ��2 �6 cos²2� = 2��� 
�� � ��2 � cos2� FGH2� = �²��FGH²2�
= 
�� � ��2 �6 FGH²2� � 2��� 
�� � ��2 � FGH2� cos 2� = �²�� cos² 2� 

 

Ou encore : 

L�# � I�� = ��2 JM6 = �#6 � 
�� � ��2 �6 = �²�� 

C’est l’équation d’un cercle centré dans le repère �;, <
 en  N 
./E.K6 , 0� et  

de rayon O � P
./2.K6 �6 = �²��. C’est ce que l’on appelle le cercle de Mohr. 

Dessinons le système �;, <
 dont les deux axes sont orientés suivant les deux contraintes �# et �# 
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N Q�� = ��20  

O � R
�� � ��2 �6 = �²�� 



On peut donc représenter n’importe quelle situation sur le cercle se rapportant à une configuration 

particulière de l’élément : 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


�� � ��D � STU D' = ���VWXD' 

; 
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�' 

I�� = ��D J 


� ��
� � D�VWX

D'�
� ��ST

UD' 

��# � I�� = ��2 J = 
�� � ��2 � cos 2� = ���FGH2�	�# � 
�� � ��2 � FGH2� � ��� cos 2�																							 
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5- CERCLE DE MOHR : Contraintes normales maximales 

Cherchons les conditions sur	� qui vérifient des contraintes normales maximales/minimales : 

On a : * �# � 
./E.K6 � � 
./2.K6 � cos 2� = ���FGH2�	�# � 
./2.K6 � FGH2� � ��� cos 2�																							 
Calculons la dérivée 

Z.,Z# : 

[�#[� � �2
�� � ��2 � sin2� = 2���\]F2� 

Recherchons la condition où 
Z.,Z# � 0; 

[�#[� � �2
�� � ��2 � sin 2� = 2���\]F2� � 0 → 
�� � ��2 � sin 2� � ���\]F2� � 0 

Ce qui est intéressant c’est que la condition qui vérifient l’existence d’un maximum de la contrainte 

normale est que la contrainte tangentielle soit nulle.  

En effet, on a �# � 
./2.K6 � FGH2� � ��� cos 2� � 0 

Soit ici, la condition sur �	: _`H>2�.a? � +/K
b/cbKB � 
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D'�d  
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N Q�� = ��20  

O � R
�� � ��2 �6 = �²�� 

D'�d  



 

Calculons les valeurs maximales des contraintes normales : 

 

��#ba � I�� = ��2 J = 
�� − ��2 � cos 2�.a + ���FGH2�.a �#ba = 
�� − ��2 � FGH2�.a − ��� cos 2�.a                         
 

Soit : � �#ba − 
./E.K6 � = cos 2�.a I
./2.K6 � + ���_`H2�.aJ
 �#ba = cos 2�.a I
./2.K6 � _`H2�.a − ���J                        

D’où : 

fgh
gi �#ba − 
./E.K6 � = cos 2�.a j
b/cbKB �BE+B/K
b/cbKB � k

 �#ba = cos 2�.a j
./2.K6 � +/K
b/cbKB � − ���k = 0  
 

Ou encore : 

fgh
gi �#ba − 
./E.K6 � = ± 1P1Emn9²6#ba j
b/cbKB �BE+B/K
b/cbKB � k

 �#ba = cos 2�.a j
./2.K6 � +/K
b/cbKB � − ���k = 0           
 

Finalement, on obtient : * �#ba = 
./E.K6 � ± P
./2.K6 �6 + �²�� �#ba = 0                                                      
 

 

On aurait pu utiliser une autre méthode en calculant les valeurs propres associées au tenseur 

des contraintes ��  �� = 
 �� ������ �� � 

Faisons une recherche des valeurs propres et des vecteurs propres associés à cette matrice 

• Valeurs propres : [o_>�� − pq?̿ = 0 

Soit [o_ L�� − p ������ �� − pM = 0, on obtient l’équation caractéristique : 

 ��� − p
>�� − p? − �6�� = 0 → p6 − >�� + ��?p + ���� − �6�� = 0 

 

Cherchons le discriminant de cette équation : Δ = >�� + ��?6 − 4>���� − �6��?  

soit : Δ = �²� + �²� + 2���� − 4���� + 4�6�� = �6� + �6� − 2���� + 4�6�� 

D’où : Δ = >�� − ��?6 + 4�6�� = 4 @
�� − ��2 �6 + �6��u 

Les valeurs propres sont données par : 



 

fg
h
gip1 � �v � >�� = ��?2 � R
�� � ��2 �6 = �6��
p6 � �w � >�� = ��?2 = R
�� � ��2 �6 = �6��

 

 

6- CERCLE DE MOHR : Contraintes tangentielles maximales 

Cherchons les conditions sur	� qui vérifient des contraintes tangentielles maximales/minimales : 

On a : * �# � 
./E.K6 � � 
./2.K6 � cos 2� = ���FGH2�	�# � 
./2.K6 � FGH2� � ��� cos 2�																							 
Calculons la dérivée 

Z+,Z# :     
Z+,Z# � 2
./2.K6 � cos2� = 2���FGH2� 

Recherchons la condition où 
Z+,Z# � 0;   

Z+,Z# � 2
./2.K6 � cos 2� = 2���FGH2� � 0 → 
./2.K6 � cos 2� =���FGH2� � 0 

Ce qui est intéressant c’est que la condition qui vérifient l’existence d’un maximum de la contrainte 

tangentielle est que la contrainte normale soit nulle.   En effet, on a �# � 
./2.K6 � \]F2� =��� sin 2� � 0 

Soit ici, la condition sur �	: _`H>2�+a? � � 
b/cbKB �+/K  
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�' N Q�� = ��20  

O � R
�� � ��2 �6 = �²�� 

D'�d  



Calculons les valeurs maximales des contraintes tangentielles : 

��#xa � I�� = ��2 J � 
�� � ��2 � cos2�+a = ���FGH2�+a	�#xa � 
�� � ��2 � FGH2�+a � ��� cos 2�+a 																							 
 

Soit : � �#xa � 
./E.K6 � � cos2�+a I
./2.K6 � = ���_`H2�+aJ
	�#xa � cos2�+a I
./2.K6 � _`H2�+a � ���J																							 

D’où : 

fgh
gi�#xa � 
./E.K6 � � cos 2�+a j
./2.K6 � � ��� 
b/cbKB �+/K k � 0
	�#xa � �cos2�+a j
b/cbKB �BE+²/K+/K k																																								 

 

Ou encore : 

fgh
gi�#xa � 
./E.K6 � � cos2�+a j
./2.K6 � � ��� 
b/cbKB �+/K k � 0
	�#xa � ∓ 1P1Emn9²6#xa j
b/cbKB �BE+²/K+/K k																																			 

 

Finalement, on obtient : 

fgh
gi�#xa � 
./E.K6 � � cos 2�+a j
./2.K6 � � ��� 
b/cbKB �+/K k � 0
	�#xa � ∓P
./2.K6 �6 = �6��																																																					 

 

 

7- CERCLE DE MOHR : TRAVAUX PRATIQUES 

 

Soit une plaque rectangulaire d’une épaisseur de o � 1zz, de longueur { � 300	zz et 

largeur } � 150	zz  tel que représentée sur le dessin. On considère pour ce problème de 

calcul de contrainte comme un problème plan.  
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On applique sur cet élément les forces suivantes (exprimées en kN) : 

�� � �{2:     �1���� = −30��; �1���� = +15��
� = + {2:     �6����� = +30��; �6���� = −15�� 

�� = − }2:     ������� = −30��; ������ = +30��
� = + }2:     ������ = +30��; ������ = −30�� 

 

1- Dessiner les forces appliquées sur la plaque. 

2- Quel type de sollicitation subi cette plaque ? 

3- Calculer pour chaque face les contraintes ��, ��et ��� associées à chacune des forces. 

Donner les unités. 

4- En déduire le tenseur des contraintes associé à ces contraintes.  

5- Calculer les contraintes normales maximales �v, �w . On utilisera les deux méthodes 

précisées dans les paragraphes précédents. 

6- En déduire l’angle '�dpour lequel on réalise ces contraintes normales maximales  

7- Calculer les contraintes tangentielles maximales �v, �w 

8- En déduire l’angle '�dpour lequel on réalise ces contraintes tangentielles maximales 

9- Tracer le cercle de Mohr relatif à ces états de contraintes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


