TP : CERCLE DE MOHR

1- ETAT DE CONTRAINTE PLANE : Rappel de cours

Soit un élément plan soumis aux contraintes oy, gy, et Ty, dans le plan (0, x, y). Le tenseur des
contraintes s’écrit dans ces conditions :

_ (O'x Txy)
Ixy Oy

lllustrons cela par un dessin : Représentons tout d’abord I'élément avec son systeme d’axe (0, x, y) et
ses vecteurs (7, ])de la base. y T

Qi

S

Sur la face de surface S et de normale U (Face de droite), on a le vecteur contrainte définit par
7= (e, o)) =(c0)
T \Txy 0y /\0 Txy

N
La composante normale sur cette face est donnée par : T.T = o,

.
La composante normale sur cette face est donnée par: T.] = Txy

Soit graphiquement : y

Sur la face de surface S et de normale —7 (Face de gauche), on a le vecteur contrainte définit par

=y o)) =)

La composante normale sur cette face est donnée par : T.1T = —o,

N
La composante normale sur cette face est donnée par: T.] = —Txy



Soit graphiquement :

Sur la face de surface S et de normale j (Face du haut), on a le vecteur contrainte définit par
7= (O'x Txy) (0) _ (TxY)
\Txy 0y /\1)  \0y
La composante normale sur cette face est donnée par : T.7 = Toy

o
La composante normale sur cette face est donnée par: T.] = ay

Soit graphiquement :

y 4

Sur la face de surface S et de normale —] (Face du bas), on a le vecteur contrainte définit par
7= (O'x Txy)( 0 ) _ (_TxY)
"ty o0y )\1) 7 -0,
La composante normale sur cette face est donnée par : T.7 = —Txy

N
La composante normale sur cette face est donnée par: T.J



Soit graphiquement :

Oy

D’ou finalement, la répartition des contraintes sur toutes les faces :




2- UN EXEMPLE SIMPLE : TRACTION
Reprenons notre élément plan. Le tenseur des contraintes s’écrit dans ce cas

()

Et si 'une des deux facettes n’étaient pas orienté suivant I'un des axes du plan définit par le

repére(0, x,y).

Regardons le cas de figure suivant toujours dans I’'exemple de la traction simple

En utilisant I'angle 8, on pourrait simplement écrire :

Tg

cosf = —
O-x

. Og
sinf = —
O-x

D’ol
Tg = 0,C0s0
Og = 0, Sinf



En fait ce résultat n’est pas correct car la contrainte o, s’exerce a droite sur une surface S et a gauche
sur une surface S* plus grande. Pour avoir I'équilibre des forces, on écrit donc:

_ ToS” S
cost = Ty = 0,C0S0—
0xS . S*

. Soit
. ggS _ . S
sinf = Og = 0, Sinf -
xS s

*

. . S . .
Par construction géométrique, on a 5 = sin 0,dou:

{09 = g, sin*0
Tg = 0,C0s 0 sin 6

Les relations trigonométriques donnent :

. 1—-cos 260 . sin26
sin?6 = —, et cos@sinf =

En reportant cela dans les composantes du vecteur contrainte :

Jx
Og = 7(1 — cos 26)

o
Tg = szin 20

Interprétation :

2

== Normale
== Tangentielle|

-
8}

Contrainte Nomale/Tangentielle




3- UN AUTRE EXEMPLE SIMPLE : TRACTION+CISAILLEMENT

Reprenons le cas général d’un tenseur des contraintes

_ (O'x Txy)
Ixy Oy

Qil

On a donc, la configuration suivante en termes de contrainte sur les 4 faces de I'élément

vt

Imaginons cette fois comme précédemment, que I'élément ai la forme suivante :

Essayons d’exprimer les vecteurs contraintes gy, Tg en fonction des contraintes gy, oyet Tyy.
Appliquons I'équilibre des forces dans le repére (X,Y).



Suivant I'axe X, on peut écrire :

TeS” + (Txysl + O'ySZ) cosf — (TxySZ + O'xsl) sind =0

Suivant I'axe Y, on peut écrire :

O'QS* - (‘rxy51 + o-ySZ) sinf — (TxySZ + o-xsl) cost =0

En rassemblant les deux équations précédentes, on a :

06S™ = (TxyS1 + 0,S;)sin 0 + (T, Sz + 0,51 cos 6

19S™ = —(TxyS1 + 0,S;) c0s 0 + (TS, + 051 ) sin 6
Tout d’abord, peu indiquer que la surface inclinée est plus grande que les deux faces a gauche et en
bas.

Sl Sz .
= =cosfet==sinb
s* s*

D’ou,



Og = (Txy cos 6 + gy, sin 6) sinf + (Txy sin @ + o, cos 9) cos @
T = —(Txy cos 6 + gy sin 6) cosf + (Txy sinf + g, cos 9) sin @

En regroupant, les fonctions trigonométriques, on obtient :

{09 = 0, c0s% 0 + g, sin® 6 + 27, cos O sin 6

79 = (0 — 0y) cos Osin 6 + (sin® 6 — cos® H) 1y,

Les relations trigonométriques donnent :

1+cos 26 . 1—cos 26
cos?6 = ,sin?@ =

sin26

et cosf@sinf =

1+ cos 26 1 —cos?26 sin20
Og = Oy + oy

> > + 274, —

sin20 1—cos260 1+ cos2@
T = (o= 0) 5 ( 2 2 )T"y

Soit :

o, T O 0y — O.
09:< x2 y)+( x2 y)c0529+rxysin26‘

O,—0
T =( X 5 y)sinZB—TxyCOSZB

4- CERCLE DE MOHR : Formalisme

On reprend le dernier systeme d’équation :

g, + o o, — O
09=< xZ y)+( xz y)c0529+rxysin29

Oy — Oy
T9=( 2

) Sin26 — Ty, cos 26

On peut remarquer que ces deux équations représentent un cercle dans le systeme d’axe (X,Y). En
effet, on peut écrire :

Ox + 0y _ (Ox — Oy )
O'g-( > )—( > )c0529+rxysm29

Ox — 0y .
19=( > )SLnZO—TxyCOSZB

2
. . 0,40 .
En faisant le calcul suivant (O'g — ( x2 y)) + 13, on obtient :

2 2 2
O, t+ 0O 0y — O Oy — O
<09 —( d > y)) +15 = <( X > y) cos 26 +Txysin29> +<( d > y)sinZG—rxy c0529>




Soit :

Oy — O\ 2 Oy — O
= ( X y) cos®26 + ZTxy( ad y) cos 20 sin26 + 1%, sin*26

2
+ (Ux _ Uy)z $in?20 — 21y, (Jx

N

2

) sin26 cos 20 + 1%, cos® 260

N

Ou encore :

—oN2
derayonR = \/(%) + szy. C’est ce que I'on appelle le cercle de Mohr.

Dessinons le systéme (X, Y) dont les deux axes sont orientés suivant les deux contraintes gy et 7y

v !




On peut donc représenter n‘importe quelle situation sur le cercle se rapportant a une configuration
particuliére de I'élément :

Ox — 0y ,
R Oog = ( ) + (T) cos 20 + Ty, sin26
Y Ox — Oy .
g = (T) Sin26 — Ty, cos 260
)
o
|
)
N
5
%}
:\
S
| [N
N




5- CERCLE DE MOHR : Contraintes normales maximales

Cherchons les conditions sur 8 qui vérifient des contraintes normales maximales/minimales :

09 — (Jx;ray) = (Jx;%) €0S 260 + Ty, 5in26

Ona:

Tp = (J";Uy) Sin26 — Ty, cos 26

, . , do
Calculons la dérivée d—::

do 0, — O
d—; =-2 (%) sin 26 + 27,,c0526
Recherchons la condition ou % =0;

dog Ox — Oy Ox — Oy .
0 -2 (T) sin 260 + 27yy,c0s20 = 0 - (T) Sin 260 — 7y,,cos26 = 0
Ce qui est intéressant c’est que la condition qui vérifient I'existence d’un maximum de la contrainte

normale est que la contrainte tangentielle soit nulle.

En effet,ona 1y = (JX;J”) Sin260 — T,y cos 26 = 0

Txy

)

Soit ici, la condition sur 9 : tan(ZHJM) =




Calculons les valeurs maximales des contraintes normales :

oy +o o, — O
O-QO_M—<x2 y):(xz y)c05290M+Txysin29

Oy — O
Tp, = (%) Sin20,,, — Tyy €c0s 26,

oM

0y, — (@) = c0s 26, ((@) + TxytanzeaM)

Ox—0y

Soit :
79,,, = COS 20,,, ((T) tan26,,, — Txy)

ax—0y

( ( )2+‘L'2

| O'GJM - (@) = Ccos ZQO'M (de—gy)xy>
D’ou : ’
T6,,, = C0S 20, <(@) (G;’f—’;y) - rxy> =0

2

( o+ 1 9x~ 0y 2+sz
- s (L

_\/1+tan2296M
Ou encore :

lTeo_M = c0s 20, ((@)(gfﬁ—%) - -[xy) =0
2

Jx+0'y)+\/(0'x—o'y)2 5
Finalement, on obtient : 965y, ( 2 - 2 t Ty
0

TBJM =

On aurait pu utiliser une autre méthode en calculant les valeurs propres associées au tenseur
des contraintes ¢

_ (O'x Txy)
Txy Oy

Faisons une recherche des valeurs propres et des vecteurs propres associés a cette matrice

Qll

e Valeurs propres : det(? - /'U=) =0

Ox — A Tyy

Soit det( ) = 0, on obtient I’équation caractéristique :

Tey Oy—A
(o, —/1)(03, - ,1) — -L-ny =0-2%— (ax + ay)/l + 0x0y — szy =0

o . . 2 2
Cherchons le discriminant de cette équation: A = (ax + ay) - 4(0x0y -1 xy)
soit :
A = 0%, + 0%, + 20,0, — 40,0y, + 47%,,, = 0%, + 0%, — 20,0y, + 472,
D’ou :

g2
A= (o, - Uy)z +41%yy = 4{(@) + szy}

Les valeurs propres sont données par :



2

+ —

/11 =0nm = (O-X 5 O-y) - (O-x 5 O-y) + szy
+ — GuN2

Ay =0y = (o 2 UJ/) + (Gx 2 Uy) + 124,

6- CERCLE DE MOHR : Contraintes tangentielles maximales

Cherchons les conditions sur 8 qui vérifient des contraintes tangentielles maximales/minimales :

ona- Og — (o*x;ro’y) _ (o—x;ay) €020 + 1y, 5in26

Tp = (J";Uy) Sin26 — Ty, cos 26

.o, adt dt Tx—0: i
Calculons la dérivée —2: =2 =2 ( xz y) c0s 20 + 27,,,sin26

a6" ae
Recherchons la condition ou % = 0; % =2 (Gx;Jy) 0S 260 + 2Ty, Sin20 = 0 - (ax_ay) cos 26 +

TyySin26 =0

Ce qui est intéressant c’est que la condition qui vérifient I'existence d’un maximum de la contrainte

tangentielle est que la contrainte normale soit nulle. En effet, on a gy = (Gxgay) cos26 +

Tyy SIN26 =0

=)

Soit ici, la condition sur 9 : tan(ZHTM) =—

Txy




Calculons les valeurs maximales des contraintes tangentielles :
Ox + 0y Ox — Oy .
%6, ~ ( > ) = ( > )cos 207, + TxySin26,,

Oy — 0
Tg. = ( X > y) Sin20;,, — Tyy €Os 26,

= (52) = ot (252

Tq,, = COS 20y, ((ax;ay) tan26,, — ‘L'xy>

o = () = o2 (52) -2 ) o

Soit :

(0~ (22 = coszn (252 -2 E20) <o

Ou encore : !

ox—oy\?2
Tg. = F L ( z ) Ty
™ \/1+tan2291-M Txy

( Oxt0. Ox—0O- (Ux_ay)
x y\ _ X y 2 —_
96, ~ (—2 ) = cos 20, ( > ) — Ty ) 0
Finalement, on obtient :

— O4—0. 2
lTeTM - +\/( xz y) + 7%y

7- CERCLE DE MOHR : TRAVAUX PRATIQUES

Soit une plaque rectangulaire d’une épaisseur de e = 1mm, de longueur L = 300 mm et
largeur [ = 150 mm tel que représentée sur le dessin. On considére pour ce probléme de
calcul de contrainte comme un probléme plan.

' T




On applique sur cet élément les forces suivantes (exprimées en kN) :

X =

X =

L

F, = —300;T; = +15]
F, = 4303;T, = —15]
F; = —30j:T; = +307

F, = +30%: T, = —307

Dessiner les forces appliquées sur la plaque.
Quel type de sollicitation subi cette plaque ?
Calculer pour chaque face les contraintes ay, gyet Ty, associées a chacune des forces.

Donner les unités.

En déduire le tenseur des contraintes associé a ces contraintes.

Calculer les contraintes normales maximales a,,, o), . On utilisera les deux méthodes
précisées dans les paragraphes précédents.

En déduire I'angle 85, pour lequel on realise ces contraintes normales maximales

Calculer les contraintes tangentielles maximales t,,, Ty
En déduire I'angle 8, pour lequel on réalise ces contraintes tangentielles maximales

Tracer le cercle de Mohr relatif a ces états de contraintes



