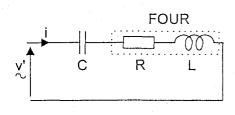

ETUDE D'UN FOUR A INDUCTION

Un four à induction est équivalent à un circuit série composé d'une inductance pure L = $60 \mu H$ et d'une résistance R = $10 m\Omega$. La fréquence de fonctionnement de la tension d'alimentation du four est fixée à f = 600 Hz.

PREMIERE PARTIE: ALIMENTATION PAR SOURCE DE TENSION ALTERNATIVE SINUSOIDALE

1. Alimentation directe sous tension nominale V_N (selon figure ci-dessous).



Le four est alimenté par un générateur de tension alternative de valeur efficace $V_N = 1000 \text{ V}$ et de fréquence f = 600 Hz.

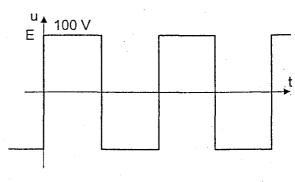
Calculer:

- 1.1. l'impédance Z du four.
- 1.2. l'intensité efficace du courant nominal absorbé I_N.
- 1.3. la puissance active P consommée par le four.

2. Alimentation indirecte sous tension réduite V' = 90 V

On ne dispose en réalité que d'un générateur de tension sinusoïdale de valeur efficace V' = 90 V (et de fréquence 600 Hz).

Voulant obtenir pour le four le même point de fonctionnement (même intensité efficace I_N) on ajoute en série avec celui-ci un condensateur de capacité C que l'on se propose de calculer (figure ci-contre).


- **2.1.** Quelle doit-être l'impédance Z' de l'ensemble du circuit (four + condensateur) pour que l'intensité efficace traversant l'ensemble reste égale à I_N calculée en **1.2.** ?
- 2.2. En déduire le facteur de puissance cos φ' de l'ensemble du circuit. Quelles sont alors les deux valeurs possibles du déphasage de la tension v' par rapport au courant i ?
- 2.3. Calculer la capacité C du condensateur. Montrer qu'il existe deux valeurs possibles C_1 et C_2 correspondant aux deux déphasages. On adoptera dans la suite la valeur de C pour laquelle le courant i(t) (de valeur efficace I_N est en avance sur la tension v'(t) du générateur.

DEUXIEME PARTIE: ALIMENTATION PAR SOURCE DE TENSION ALTERNATIVE "CARREE" DE FREQUENCE f = 600 Hz

1. Alimentation indirecte

Un générateur délivre une tension u(t) alternative "carrée" de rapport cyclique $\alpha=\frac{1}{2}$ comme le montre la figure ci-contre). Cette tension a pour développement en série de Fourier :

$$u(t) = \frac{4 \cdot E}{\pi} \left[\sin(\omega t) - \frac{1}{3} \cdot \sin(3\omega t) + \frac{1}{5} \cdot \sin(5\omega t) - \dots \right]$$

