Institut National des Sciences et Techniques Nucléaires

un écart type de
$$\approx \sqrt{N}$$

— Si $x << 1$, alors $\exp(x) = 1 + x + x^2/2 + O(x^3)$

uestion 3: Technique d'IRM.

- 1. On souhaite acquérir une IRM par écho de spin.
 - a. Enoncer la règle de sélection de coupe par un gradient de champ magnétique en IRM.
 - b. Dans le repère (X, Y, Z) habituel de l'IRM, B₀ est orienté selon Z et le patient est allongé selon Z. Selon quelle direction doit-on appliquer le gradient de champ magnétique G_{coupe} pour sélectionner une coupe axiale?
- On utilise l'intensité maximale du gradient G_{coupe} = 10⁻² T.m⁻¹ pour sélectionner la coupe.
 Calculer la largeur spectrale Δf de l'impulsion d'excitation de 90° permettant de sélectionner une épaisseur e = 10 mm.
- 3. On appelle k_x et k_y les coordonnées de l'aimantation dans le plan de Fourier. Que valent k_x et k_y après application de l'impulsion d'excitation de 90°?
- 4. Après l'impulsion d'excitation, on applique simultanément les 2 gradients de B₀ rectangulaires suivants :
 - un gradient d'intensité +G et de durée TO selon X,
 - un gradient d'intensité -G et de durée TO selon Y.

Donner l'expression de k_x et k_y en fonction de γ , G et TO après application de ces gradients.

- 5. On applique ensuite l'impulsion RF de 180° de la séquence d'écho de spin. Expliquer en une phrase le rôle de cette impulsion RF.
- 6. Donner l'expression de k_x et k_y en fonction de γ, G et TO après application de cette impulsion.
- 7. On souhaite acquérir l'image sur un champ de vue FOV_{lecture} = 25 cm (selon la direction du gradient de lecture G_{lecture}) en échantillonnant le signal avec une bande passante SW = 42,57 kHz. Calculer la valeur maximale de G_{lecture} qui respecte le théorème de Nyquist-Shannon?
- 8. Deux tissus a et b de même densité électronique et de temps de relaxation respectifs (T1a=2s, T2a=0,1s) et (T1b=0,5s, T2b=0,05s), sont examinés à l'aide de deux séquences d'écho de spins de paramètres (TR1=1s, TE1=0,01s) puis (TR2=5s, TE2=0,08s). Calculer, pour ces deux séquences, les contrastes obtenus entre les deux tissus relativement au tissu a. Commenter.

onnée: $\gamma/2\pi = 42,57 \times 10^6 \text{ T}^{-1}.\text{s}^{-1}$