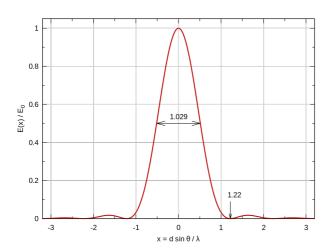
Bilan de liaison

L'amplitude d'une onde lumineuse qui passe dans une ouverture circulaire de diamètre d diffracte et ce concentre principalement dans l'angle α


La largeur de la tache de diffraction. $\alpha = 1,22. \lambda / d$

Si on prend la tâche à mi-hauteur $\alpha^{\circ} = \lambda / d$

Si l'amplitude de la lumière se répartissait dans tout l'espace l'amplitude lumineuse serait bien plus faible. On peut fabriquer un G en amplitude Ga

Le gain en amplitude Ga = $4\pi / \alpha = (4 \pi d)/(\lambda)$

https://fr.wikipedia.org/wiki/Tache_d%27Airy#/media/Fichier:Airy_p attern scaled.svg

Le gain en puissance est le carré (la puissance est proportionnelle au carré de l'amplitude)

Le gain en puissance $G = (4\pi/\alpha)^2 = ((4\pi d)/\lambda)^2$

 $G = (4\pi * 4\pi d^2) / ((\lambda^2))$. On remarque que $4\pi d^2 = S$ (surface)

 $G = (4\pi S)/\lambda^2$) c'est le gain d'une antenne de surface S

On a donc calculer le gain d'une antenne de surface S

On a dejà vue que. $Pr = Pe S / (4\pi D^2)$

Pour l'antenne de réception de gain Gr on a. Gr = $(4\pi \text{ Sr})/\lambda^2$)

Donc Sr = Gr
$$\lambda^2 / 4\pi$$

Pr. =. Pe Gr λ^2 / $(4\pi \ 4\pi \ D^2)$. Qui se met sous la forme

$$Pr = Pe Gr (\lambda/4 \pi D)^2$$

Ici D est la longueur de la liaison , le terme ($\lambda/4 \pi$ D)² s'appelle affaiblissement d'espace libre.

Pe est la puissance d'émission plus exactement la PIRE puisque nous avons considéré au début que l'émission était isotrope.

La PIRE est la puissance fournit à l'antenne multipliée par son Gain Ge

Finalement la puissance reçue est

$$Pr = Pe Ge Gr (\lambda/4 \pi D)^2$$

Avec cette formule tu peux calculer la puissance reçue par ta sonde spatiale située à plusieurs millions de kilomètres.

Peut être cela demande quelques commentaires pour bien comprendre ?