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de
R
ou
en

-
re
ve
ill
on
@
co
ria

.fr
–
p.
15
/9
4



F
lu

x
de

St
ef

an
-

co
nc

lu
si

on
s

C
on
cl
us
io
ns

D
an
s
le
s
de
ux

ex
em

pl
es
,l
e
flu
x
de

S
te
fa
n
es
tp
os
iti
f(
de

la
su
rf
ac
e
ve
rs
le
ga
z)
.
Il
pe
ut
da
ns

ce
rt
ai
n
ca
s
êt
re

né
ga
tif
.

C
on
di
tio
ns

su
ffi
sa
nt
es

po
ur

l’a
pp
ar
iti
on

d’
un

flu
x
de

S
te
fa
n:

E
xi
st
en
ce

d’
un

pr
oc
es
su
s
ph
ys
iq
ue

ou
ch
im
iq
ue

à
la

su
rf
ac
e

D
iff
us
io
n
m
ul
tic
om

po
sa
nt
e
de
pu
is
ou

ve
rs
la
su
rf
ac
e

J.
R
év
ei
llo
n
-
U
ni
ve
rs
ité
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de
R
ou
en

-
re
ve
ill
on
@
co
ria

.fr
–
p.
23
/9
4



E
va

po
ra

ti
on

d’
un

e
go

ut
te

-
In

er
te

C
ha
ng
em

en
td
e
va
ria

bl
e

In
tr
od
uc
tio
n
du

pa
ra
m
èt
re

de
S
pa
ld
in
g
:

b
=

Y
F

Y
F

,s
−

1

b
=

b(
r)
es
tl
e
ra
tio

en
tr
e
la
fr
ac
tio
n
m
as
si
qu
e
de

fu
el
en

to
ut
po
in
tr

et
la
fr
ac
tio
n
m
as
si
qu
e
de
s
es
pè
ce
s
au
tr
es

qu
e

F
.

Il
s’
ag
it
à
pr
és
en
td
e
ré
éc
rir
e
le
sy
st
èm

e
d’
éq
ua
tio
ns
.

J.
R
év
ei
llo
n
-
U
ni
ve
rs
ité
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de
R
ou
en

-
re
ve
ill
on
@
co
ria

.fr
–
p.
25
/9
4



E
va

po
ra

ti
on

d’
un

e
go

ut
te

-
In

er
te

In
té
gr
at
io
n
(ρ

v
r2

=
ρ

s
v s

δ2
)

    

ρ
s
v s

δ2
b

=
r2

ρ
D

d
b

d
r

+
C

ρ
s
v s

δ2
C

pT
=

r2
λ

d
T d
r

+
C

A
ve
c
le
s
co
nd
iti
on
s
au
x
lim

ite
s

    

ρ
s
v s

δ2
(b

−
b s

+
1)

=
r2

ρ
D

d
b

d
r

ρ
s
v s

δ2
C

p
(

T
−

T
s
+

h
c
(T
∞
−

T
s
)

ρ
s
v

s
C

p

)

=
r2

λ
d
T d
r

J.
R
év
ei
llo
n
-
U
ni
ve
rs
ité

de
R
ou
en

-
re
ve
ill
on
@
co
ria

.fr
–
p.
26
/9
4



E
va

po
ra

ti
on

d’
un

e
go

ut
te

-
In

er
te

O
n
ar
ra
ng
e
le
s
éq
ua
tio
ns

:
        

ρ
s
v s

δ2

ρ
D

d
r r2

=
d
b

b
−

b s
+

1
ρ

s
δ2

v s
C

p

λ

d
r r2

=
d
T

(

T
−

T
s
+

h
c
(T
∞
−

T
s
)

ρ
s
v

s
C

p

)

O
n
in
tè
gr
e
de

no
uv
ea
u

          

ρ
s
v s

δ2

ρ
D

(

1 r
−

1 δ Y

)

=
ln

(

b ∞
−

b s
+

1

b
−

b s
+

1

)

ρ
s
v s

δ2
C

p

λ

(

1 r
−

1 δ T

)

=
ln

 

T
∞

−
T

s
+

h
c
(T
∞
−

T
s
)

ρ
s
v

s
C

p

T
−

T
s
+

h
c
(T
∞
−

T
s
)

ρ
s
v

s
C

p

 

J.
R
év
ei
llo
n
-
U
ni
ve
rs
ité
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de
R
ou
en

-
re
ve
ill
on
@
co
ria

.fr
–
p.
28
/9
4



E
va

po
ra

ti
on

d’
un

e
go

ut
te

-
In

er
te

N
om

br
es

de
tr
an
sf
er
t

    

S
pa
ld
in
g
m
as
si
qu
e

B
M

=
b ∞

−
b s

=
Y

F
,s
−

Y
F

,∞

1
−

Y
F

,s

S
pa
ld
in
g
th
er
m
iq
ue

B
T

=
ρ

s
v s

C
p

h
c

N
om

br
es

co
nv
ec
tif
s

    

S
he
rw
oo
d
co
nv
ec
tif

S
h

c
=

2
δ Y

δ Y
−

δ

N
us
se
lt
co
nv
ec
tif

N
u

c
=

2
δ T

δ T
−

δ

J.
R
év
ei
llo
n
-
U
ni
ve
rs
ité
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de
R
ou
en

-
re
ve
ill
on
@
co
ria

.fr
–
p.
31
/9
4



E
va

po
ra

ti
on

d’
un

e
go

ut
te

-
In

er
te

N
ot
e
:
éc
ha
uf
fe
m
en
td
e
la
go
ut
te

E
xp
rim

on
s
le
co
ef
fic
ie
nt
de

co
nv
ec
tio
n
en

fo
nc
tio
n
du

dé
bi
t

m
as
si
qu
e
de

l’e
sp
èc
e
à
la
su
rf
ac
e
de

la
go
ut
te

W
v

=
4π

ρ
s
δ2

v s
.
Lo
rs
qu
e

r
=

δ,
al
or
s,

ρ
s
v s

C
p

h
c

+
1

=
ex

p

(

W
v
C

p

2π
δλ

N
u

c

)

d’
où

h
c

=
W

v
C

p
π
a
2

ex
p
(

W
v
C

p
π
a
λ
N

u
c

)

−
1

=
W

v
C

p
π
a
2

B
T

J.
R
év
ei
llo
n
-
U
ni
ve
rs
ité
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de
R
ou
en

-
re
ve
ill
on
@
co
ria

.fr
–
p.
55
/9
4


