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The wavelength of turbulent Taylor vortices a t  very high Taylor numbers up to 
40000T, has been measured in long fluid columns with radius ratios 7 = 0.896 and 
7 = 0.727. Following slow acceleration procedures the wavelength (in units of the 
gap width) of turbulent axisymmetric vortices was found to be h = 3.4 0.1 with 
the small gap and about h = 2.4 & 0.1 with the larger gap, and thus in both cases 
substantially larger than the critical wavelength of laminar Taylor vortices. In  the 
narrow and wide gap the wavelength was, within experimental error, independent of 
the Taylor number for T > lOOT,. In  the experiments with the narrow gap a clear 
dependence of the value of the wavelength of the turbulent vortices on initial con- 
ditions was found. After sudden starts to Taylor numbers > 700Tc the wavelength 
of steady axisymmetric turbulent vortices was only 2.4 & 0.05, being then the same 
as the wavelength of the vortices after sudden starts in the wide gap, and being, 
within the experimental error, independent of the Taylor number. In  the narrow gap 
all values of the wavelength between A,,, = 3.4 and hmin = 2.4 can be realized as 
steady states through different acceleration procedures. I n  the wide gap the de- 
pendence of the wavelength on initial conditions is just within the then larger experi- 
mental uncertainty of the measurements. 

1. Introduction 
It has been known for a long time that Taylor vortices retain their basic toroidal 

structure discovered by G. I. Taylor (1923) also under turbulent conditions, that  
means at very high Taylor numbers. The oldest evidence pointing in this direction is 
the paper of Pai (1943) who studied turbulent flow between rotating cylinders. With 
regard to the type of flow between the cylinders Pai observed, ‘It seems, therefore, 
that ring-shape vortices still exist a t  Reynolds numbers as high as several hundred 
times the critical Reynolds number’. The next study from which information about 
turbulent Taylor vortices can be obtained is the paper of Schultz-Grunow & Hein 
(1956). They show a sequence of pictures demonstrating the onset of the Taylor 
instability, the transformation to doubly periodic flow, the transition to turbulence 
and finally axisymmetric turbulent vortices a t  around 200 times the critical Reynolds 
number. I n  Pai’s and Schultz-Grunow & Hein’s studies it was observed that the 
size of the vortices increased with increased rotation rates. Pai noted a decrease of the 
number of vortices from 6 to 4. Schultz-Grunow & Hein found that the vortices a t  
the highest rotation rates were ‘about twice as long’ as under critical conditions. Both 
observations are of a qualitative nature, Pai’s apparatus was too short to permit small 
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variations of the vortex size, and Schultz-Grunow & Hein's paper is mainly a demon- 
stration of a visualization technique. 

The transition to turbulent Taylor vortex flow was first investigated systematically 
by Coles (1965). He studied the range of Taylor numbers from critical to about lOOT,, 
discovered the existence of doubly periodic flow and observed a dependence of the 
doubly periodic vortices on initial conditions. It seems that in his experiments the 
axial wavelength of the vortices increased on the average with increased Taylor 
numbers. Coles also presented photographs of turbulent vortices, but did not go into 
further detail other than in the case of spiral turbulence, which occurs when the 
cylinders counter-rotate. Spiral turbulence is discussed in detail in the paper of Van 
Atta (1966). A theoretical basis for the understanding of doubly periodic flow was then 
laid in a paper by Davey, DiPrima & Stuart (1968). This investigation was continued 
by Eagles (1971) and Nakaya (1975); similar studies of the temporal development of 
Taylor vortices have been made by Yahata (1979). 

The investigation of the transition to turbulence in Taylor vortex flow has been 
continued recently in experiments by Fenstermacher, Swinney & Gollub (1979) and 
Walden & Donnelly (1979). I n  these experiments detailed local measurements of the 
velocity of the flow a t  Taylor numbers ranging to  a few hundred T, have been made. 
It was noted again that the toroidal structure of the flow is retained at even higher 
Taylor numbers under turbulent conditions. However, no further studies of turbulent 
vortices were made since the velocity distributions degenerate to broad bands of 
noise as turbulence is approached. It still remains to be determined precisely under 
what circumstances the size of the Taylor vortices increases and by how much if the 
doubly periodic regime is passed and the turbulent regime is entered. It is the purpose 
of the experiments to be described in the following to provide this information. 

2. Description of the apparatus 
The apparatus used is a slightly modified version of the apparatus described in 

detail in Burkhalter & Koschmieder (1973), henceforth referred to  as I, where a 
schematic section through the apparatus is shown. The outer glass cylinder was held 
stationary and was the same as that used in I, having an internal radius of 6.285 & 
0.006 cm. Most experiments were made with a new inner brass cylinder with an outer 
radius of 5.633 0.005 cm. The gap width is then 0.658 5 0.01 cm and the radius ratio 
T,I = r i / ro  = 0.896. The larger of the two cylinders used in I with a radius of 4.572 cm 
and a gap of 1.713 cm and a radius ratio T,I = 0-727 was also used in the present experi- 
ments. The fluid column was 80.5 cm long with the narrow gap and 84-9 cm long with 
the wide gap. There was then space for 122 critical vortices in the narrow gap and 50 
vortices in the wide gap, making both columns reasonable approximations of the 
infinitely long column investigated in theoretical studies. A detailed investigation of 
the column length effects can be found in Cole (1976). The fluid columns had stationary 
end plates in all experiments. The temperature of the glass cylinder was held constant 
and a t  the temperature of the inner cylinder by water of 25OC circulated between 
the glass cylinder and a lucite cylinder surrounding the glass cylinder, and through 
the inner cylinder as well. This was done to eliminate any possible effect of radial 
temperature gradients. The fluid in the gap between the glass cylinder and the rotating 
inner cylinder was water. The fluid motions were made visible by aluminium powder 
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suspended in the water. The vertical extension of the vortices 
cathetometer accurate to & 0-01 cm. 

The Taylor number in an  apparatus with radius ratio 7 is 
(Roberts 1965) 

2q2 Q2d4 

1-72 v2 ' 
T=-- 
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were measured with a 

given by the formula 

where i2 is the angular velocity, d the gap width and v the kinematic viscosity (v of 
water a t  25 "C = 0.896 x 

The wavelength is a non-dimensional measure of the size of the vortices, defined as 
the ratio of the vertical extension 21 of two vortices divided by the gap width d. The 
theoretical significance of the wavelength is evident from the fact that  the critical 
wavelength is one out of only two quantities which follow directly from linear stability 
analysis, the other quantity being the critical Taylor number. The wavelength 
measured in experiments is not necessarily the same as the wavelength determined 
theoretically for fluid columns of infinite length, because of end effects and the 
associated quantizat,ion condition. All wavelengths determined in the following 
experiments have been determined with the formula for the wavelength in a finite 
column, namely 

(2) 

(see I), where L is the column length, N is the number of vortex pairs (which are 
referred to  as rings) and d the gap width. Formula (2) does not make provision for end 
effects. It gives the average value of the wavelength in the entire column, regardless 
of whether the flow is doubly periodic or not. Since all measurements determined hfi 
the subscript f i will be dropped from now on. 

ern2 s-l). 

hfi = L f Nd 

3. Wavelength measurements in the narrow gap 
The wavelength was determined as a function of the Taylor number using two 

methods to  reach a given Taylor number, namely either the steady acceleration 
procedure or the sudden start procedure. It was observed in I and in Burkhalter & 
Koschmieder (1974) (henceforth referred to  as 11) that the wavelength of laminar 
axisymmetric Taylor vortices is markedly different if a certain supercritical T is 
reached either by a quasi-steady increase of the rotation rate or through a sudden 
start. The very high Taylor numbers studied in the present experiment do not permit 
the slow quasi-steady increase, rather the rotation rate had to  be increased steadily. 
This is done by a motor which steadily turns the control of the motor turning the 
inner cylinder. But the increase of the rotation rate was made as slow as possible, 
namely at such a rate that the highest studied Taylor number was reached within 8 h. 
The steady acceleration rate was then 7 x rad s - ~ .  If experiments with lower 
Taylor numbers were made the same acceleration rate was used but the increase of 
i2 was then interrupted by time intervals in which the rotation rate was held constant. 
This procedure will be referred to  as slow acceleration. In most experiments the 
average acceleration rate was substantially smaller than 7 x 10-4rad s - ~ .  The sudden 
start experiments were conducted as described in 11. The control of the drive motor 
was set for a rotation rate corresponding to  a desired Taylor number while the motor 
was a t  rest. When the motor was switched on steady rotation of the inner cylinder 
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was obtained within a second, which is a much shorter time interval than the viscous 
relaxation time d2/v of the fluid, which is of order of a minute. 

Experiments in the moderately supercritical range up to about 6% were made 
with a more viscous fluid, namely silicone oil of 0-1 em2 s-l viscosity, because with water 
the rotation rate of the inner cylinder would have been too slow to obtain satisfactory 
results. Increasing the rotation rate very slowly from zero on, Taylor vortices were 
first observed to form at the top and bottom end pla,tes. Details of the effects that the 
end boundaries can have on the Taylor vortices in a short column have been discussed 
by Benjamin (1978). Increasing !2 slowly caused the formation of additional vortices 
spreading from the ends until a t  T, the entire column was filled with a perfect pattern 
of laminar, axisymmetric vortices. The centre section of such a pattern is shown on 
figure 1 (plate 1). The measured critical wavelength A, was then A, = 2.13, deviating 
by + 6 yo from the expected theoretical A, which is 2.008 according to Roberts (1965). 
Note that the systematic uncertainty due to the quantization condition is Ah = 2 0.03. 
The uncertainty in the length of the column is of order of 0.1 yo, the uncertainty of the 
gap width over the entire length of the column is of order of 1.5 yo. That still leaves 
3 % experimental error unaccounted for, which must originate from variations of the 
size of the end rings, which are larger than the rings free from the ends as discussed in 
I .  Increasing the Taylor number above critical caused transition to doubly periodic 
flow a t  T = 1-26T,. The axial wavelength remained unchanged until then. 

Experiments with T > 5T, were made with water as the fluid. An example of doubly 
periodic flow a t  7T, is shown on figure 2 (plate 2). Note that at this value of the Taylor 
number the wavelength has already increased by about 20 % above A,. Under these 
'conditions the flow is still perfectly laminar, without any time-dependent irregularities 
and can be maintained like that for hours. There is, however, non-uniqueness. Depend- 
ing on the way in which a particular T in this range has been realized, either very 
slowly or, say, through a sudden start, the axial and azimuthal wavelengths of various 
resulting steady states differ. This has been studied in detail by Coles (1965) and has 
therefore not been pursued here any further. Continuing the steady acceleration 
procedure, the axial wavelength of the flow increased, on the average, with increased 
T, and the azimuthal wavelength increased, on the average, as well. The qualifying 
phrase 'on the average' does not exclude that a particular state with a given 
axial and azimuthal wavelength a t  a given T cannot be maintained if the Taylor 
number is varied. But if acceleration procedures are followed in which the fluid is 
never in true equilibrium and if the axial wavelengths of various experiments after 
different acceleration periods are compared, then it is found that the wavelength 
increases with T on the average. The axial wavelength of the flow in several steady 
states, in which the rotation rate was held constant for a t  least an hour following a 
preceding steady acceleration procedure, are shown in figure 3. 

Proceeding with a steady acceleration up to IOOT,,  the axial wavelength increased 
to a maximal value of about A,,, N_ 3.4. The average value of A,,, after ten steady 
acceleration experiments up to I O O T ,  is indicated in figure 3 by the open circle marked 
with a cross. With the increase of T the flow became gradually irregular, so that at 
IOOT, a truly laminar pattern did no longer exist. The transient irregularities of the 
flow persisted even if the rotation rate was held constant for hours a t  IOOT,.  A picture 
of the flow in this state is shown on figure 4 (plate 3). Note that the azimuthal wave- 
length has increased also, there are now only two waves along the circumference, 
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FIGURE 3. Wavelengths of Taylor vortices after steady acceleration experiments (0) and after 
sudden starts (0 )  in the narrow gap. Arrows indicate shifts of the Taylor number. The shaded 
arm indcates the region of non-uniqueness. 

while there were six azimuthal waves on figure 2 .  There were only two azimuthal 
waves at IOOT, in each case that the azimuthal wavelength was determined. 

A critical point seems to have been reached in this apparatus at around 100%. 
As we will see soon, the characteristics of the flow change markedly when lOOT, is 
exceeded. We note in this context that in the velocity spectra of Fenstermacher 
et al. (1978) the broad band of noise which ultimately becomes turbulence appears 
at  a Reynolds number of around 12Re,, which corresponds to a Taylor number of 
144Tc. The apparatus of Fenstermacher et al. and our apparatus differ, in particular 
in the ratio of the column length to gap width. Therefore one cannot expect precise 
agreement in the value of the Taylor number at  around which turbulent Taylor vortex 
flow forms in both apparatus. But it appears that, within the experimental uncertainty, 
the appearance of the broad band of noise in their experiments and the change of the 
characteristics of the flow in this experiment are compatible. In  this experiment we 
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say that a t  around 100% the transformation to  real turbulence begins. By real tur- 
bulence we mean that all three velocity components a t  any point in the fluid are 
randomly varying functions of time. The velocity components of the flow shown on 
figure 2 are certainly already functions of time a t  any point in the fluid; however the 
variations do not seem to be random yet. But the real justification for the statement 
that  the transformation to turbulence begins a t  around IOOT, in this experiment 
comes from the fact that  from lOOT, on the characteristics of the flow change drastically 
in order to match the behaviour of the flow under conditions when the flow is un- 
doubtedly turbulent. That means (1) the wavelength of the vortices becomes in- 
dependent of the Taylor number, while h definitely increased up to  lOOT,; and (2) 
that  the wavelength becomes again very clearly dependent on initial conditions, 
while a t  I O O T ,  the wavelength was, within the experimental errors, see figure 3, not 
dependent on initial conditions. We will now discuss these points in detail. 

For T > IOOT,  the axial wavelength does not increase further but remains constant 
if the rotation rate is increased through steady acceleration. The two azimuthal waves 
that remained a t  1 OOT,  gradually disappear and axisymmetric turbulent vortex flow 
is established a t  T 1: 700Tc. With axisymmetric turbulent vortex flow we mean 
axisymmetry in a statistical sense. This means in particular that  the sinks of the 
vortices are aligned horizontally, as can be seen on figures 5 and 8 (plates 4 and 7).  
Under these circumstances there are, of course, also rapid small scale variations of the 
location of the sinks. As soon as the vortices are axisymmetric (in the mean) they 
become very stable with regard to either fast increases or fast decreases of the rotation 
rate of the inner cylinder, in a way strongly reminiscent of the behaviour of axi- 
symmetric laminar Taylor vortices whose wavelengths remain also unchanged if the 
Taylor number is varied (over a large range), regardless whether that is done slowly 
or quickly, as was reported in 11, figure 9. For example, the wavelength A,,, of the 
turbulent vortices did not change if the Taylor number was increased in 30s from 
3 O O q  to  3800T,, or vice versa if the Taylor number was reduced from 3800 to  3 0 0 q  in 
30 s. If the Taylor number is reduced one has to stay away from the doubly periodic 
nearly laminar regime in order to preserve the wavelength. Examples of such quick 
increases, respective decreases of the Taylor number, referred to as shifts, are indicated 
in figure 3 by the arrows. A photograph of steady turbulent axisymmetric flow with 
the maximal wavelength is shown on figure 5 .  Taylor numbers higher than 4000T, 
were not tried but there was no indication whatsoever that the behaviour of the flow 
was about to  change. 

Over the entire range of Taylor numbers the steady or slow acceleration experiments 
were supplemented with sudden start experiments. The sudden start experiments at 
each particular Taylor number were repeated a t  least 20 times in order to obtain a 
sufficient data basis for the determination of the standard deviation of the wavelength 
measurement. The standard deviations are indicated in figure 3 by the error bars. 
Note that there is also a systematic error associated with the wavelength measurements, 
caused by the quantization condition. Since we have stationary end plates a t  both 
column ends and since stationary end plates force the flow to form a sink a t  the 
location of the end plate (as discussed in I), both end conditions mean that variations 
of the average cell size smaller than 1 (where 1 is the vertical extension of one vortex) 
do not change the number of cell pairs. Variations larger than rf: 1 will either add or 
subtract a pair of cells from the column, which changes the wavelength according to 
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formula (2). The standard deviations of all sudden start wavelength measurements 
were smaller, but not much, than the systematic error f 1 / N  of the wavelength 
measurement, except for the case at l O O T , ,  where the standard deviation was f 1*50/N 
which corresponds to an uncertainty of k 4 % of the wavelength. 

The axial wavelengths of the vortices obtained by sudden starts in the range 
between 8 and 100Tc are, within the experimental errors, the same as the wavelengths 
obtained by steady acceleration experiments, as is shown in figure 3.  In this apparatus 
with its long column, narrow gap, low viscosity fluid and the resting outer cylinder 
there is, in this range of Taylor numbers, only a modest degree of non-uniqueness, 
which is of about the order of the systematic uncertainty of the wavelength measure- 
ment. 

Sudden starts to Taylor numbers > 100% showed that the behaviour of the flow 
had changed significantly. As is shown in figure 3 the axial wavelength of the flow 
obtained after sudden starts is then much shorter than the wavelength of the flow 
after steady acceleration experiments. Doubly periodic turbulent vortices with two 
azimuthal waves formed after sudden starts to 211 and 300Tc. Figure 6 (plate 5) 
shows such doubly periodic turbulent vortices. At T = 211% and T = 300c the axial 
wavelength of the steady state is already clearly shorter than A,,,. Note that at 
211% the standard deviation of the wavelength is very small ( k 0.7 %). This seems 
to be associated with the doubly periodic nature of the flow which apparently permits 
the vortices to adjust their wavelength even half an hour after the sudden start. That 
was similarly so a t  300%. On the other hand, such a late adjustment of the wavelength 
never occurred with axisymmetric turbulent flow, where the pattern formation was 
always completed after 5 min a t  most. Increasing the Taylor number of the sudden 
starts to 700% or more produced axisymmetric turbulent vortices with wavelengths 
of around Amin = 2.4 which is substantially larger than the critical wavelength A, of 
laminar flow. Within the error of measurement Amln is independent of the Taylor 
number. Note that the range of Taylor numbers over which A,,, appears is very 
distorted in figure 3 by the semilogarithmic plot. The wavelength A,,, observed in 
the steady state after sudden starts is now about 30 yo smaller than the wavelength 
A,, after steady acceleration experiments. Once formed after a sudden start the 
axisymmetric turbulent vortices retained their wavelength indefinitely and regardless 
of later increases or decreases of the Taylor number. For example the shift from 700 
to 3800T indicated in figure 3 did not change A, although the shift was made in only 
30s, that was as fast as the control of the motor could be turned by hand. It seems 
to be important to mention that the axisymmetric turbulent Taylor vortices form out 
of a seemingly chaotic motion (see figure 7, plate 6) that arrives a t  the outer cylinder 
0.5 s after the motor is switched on for a sudden start. A pattern of vortices is then 
established within a minute. It takes about 1 or at  most 2 more minutes to smooth out 
differences in the size of individual vortex pairs (rings). The size distribution of all 
rings in the column will be discussed later. An example of axisymmetric turbulent 
vortex flow after a sudden start is shown on figure 8 (plate 7 ) .  

All wavelengths which are compatible with the formula A = L / N d  and are in the 
interval between A,,, and Amin can be realized as steady states (there are altogether 
15 such states in this apparatus) at any Taylor number > 700Tc by sudden sta,rts to 
a Taylor number 100Tc < T < 700% and a subsequent shift, as is indicated by the 
various arrows in figure 3. The one arrow which does not point vertically is from a shift 
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FIGURE 9. Wavelengths of Taylor vortices after slow acceleration experirnents (0) arid after 
sudden starts (0)  in the wide gap. The arrow indicat,es a shift of the Taylor number. 

made deliberately after a sudden start when the pattern formation was not yet 
completed. During the following change of the Taylor number the flow adjusted its 
wavelength through an increase of the number of vortices. This is, of course, not a 
reversible procedure. Reducing the Taylor number of the final state would not have 
changed the wavelength until the doubly periodic regime had been entered. If we 
extrapolate the observations with the various steady non-unique states a t  a given 
Taylor number > 700q to  the flow in an infinitely long cylinder then we find that 
there would be a continuum of possible st,eady states of turbulent vortices with all 
wavelengths ranging from A,,, to  Amin. This is strikingly similar to the behaviour of 
laminar axisymmetric Taylor vortex flow where such a continuum of non-unique 
states exists likewise, as discussed in 11, see in particular figure 12 therein. The non- 
uniqueness of the turbulent vortices can be seen easily with the naked eye and is 
demonstrated on figure 10 (plate 8). 

We must finally ask whether with the development of turbulent flow the azimuthal 
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periodicity, originally present in the azimuthal waves during the transition to turbulent 
flow, has disappeared completely. That does not seem to be the case. On figure 5 and in 
particular on figure 8 one can see that the interfaces between the different rings (the 
sinks) appear to be braided. Pursuing the motion visually one sees a t  the location 
of the sinks a distinct axial wave, travelling slowly in the direction of motion of the 
inner cylinder. The azimuthal wavelength of this wave appears to be fairly regular 
and is of order of the axial length of the vortices. It requires motion pictures to make 
this phenomenon easily visible. 

We must finally show that  A ,  the average value of the wavelength of the flow, is 
indeed characteristic. We have to prove that the standard deviation of the wave- 
lengths of all vortices measured individually is small as compared with the mean value 
of h and we have also to verify that the boundary conditions a t  the ends of the fluid 
column do not strongly affect the wavelength of all vortices. Table 1 gives samples of 
measurements of the vertical extension of turbulent vortex pairs (rings) normalized 
with the gap width, under various experimental conditions, together with the mean 
and the standard deviation of the wavelength of all individual rings. Also listed are 
the mean and standard deviation of the five top, as well as five centre and the 
five bottom rings and the mean and standard deviation of the rest of the rings 
(i.e. all rings except the five top and bottom rings) in the column, so that the 
effect of the top and bottom boundaries can be assessed. Of importance is the 
line with h (rest), which shows that the greatest part of the column around its 
centre has rings of very uniform size with standard deviations of * 6 % for 26 rings 
and 4% for 41 rings (at 1660Tc as well as 3800Tc). The major contribution to these 
experimental uncertainties originates from the difficulty of pinpointing precisely the 
location of the sinks of the turbulent vortices. Nevertheless, the standard deviation 
of the wavelengths after steady acceleration (36 rings) is only 0-14cm, although in 
this case i t  appears to be hardly possible to locate the sinks with an accuracy of 
better than +O-lcm. For the sudden start experiments (51 rings) the standard 
deviation is 5 0-06 cm, in this case the sinks are sharper. Note that the cathetometer 
accuracy is & 0.01 cm. In  the rings free from the column ends there appears, however, 
to be a small gradual increase of the wavelength with increased depth along the 
column. This seems to be most apparent in the sudden start experiment with 3800Tc. 
The slope of the 41 rings of the centre was however only 0.002, which makes it question- 
able whether the variation of the wavelength in the free part of the column is sig- 
nificant. In  all cases discussed in table 1 there is clear evidence that the end rings are 
substantially larger than the average rings and, also, that the end effect carries over 
to the neighbouring rings a t  the bottom and to a lesser degree to the neighbouring 
rings at the top end. This is different from the observations reported in I ,  where, in 
laminar flow with resting end plates, the end rings were the only rings measurably 
affected by  the boundary conditions. 

4. Wavelength measurements in a larger gap 
Since the wavelength of the turbulent vortices in the narrow gap depends so obviously 

on initial conditions we wondered whether this effect had been overlooked in the 
previous experiments described in I and 11, where the wavelength of turbulent flow 
in a gap with 7 = 0.727 had already been measured. It was mentioned in I, figure 8 ( I ) ,  
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TIT, ... 
Number of rings 

hfi 
A, 
T 
h top 5 rings 

h centre 5 rings 

h bottom 5 rings 

h column 

h centre 5 
h bottom 5 
h rest 

h top 5 

1660 

36 

3.429 
2.008 
0.896 
3-70 
3.2 1 
2.71 
2.82 
2.82 
3.16 
3.47 
3.59 
3.33 
3.36 
4.14 
4.03 
4.43 
4.42 
5.06 

3.42 f 0.49 
3.05 ? 0.40 
3.37 f 0.15 
4.42 f 0-40 
3-30 & 0.21 

f (6 Yo) 

1660 

51 

2.42 
2.008 
0.896 
2.73 
2.41 
2.44 
2.18 
2.39 
2.25 
2.4 1 
2.42 
2.47 
2.41 
2.56 
2.52 
2.48 
2.53 
3.07 

2.42 ? 0.14 
2.43 & 0.20 
2.39 ? 0.08 
2-63 f 0.24 
2.40 f 0.09 

f (4 "/o) 

3800 

51 

2.42 
2,008 
0-896 
3-05 
2.21 
2.27 
2.16 
2.35 
2.32 
2.30 
2.32 
2.36 
2.44 
2.52 
2.61 
2.76 
3.41 
4.25 

2.42 f 0.34 
2.41 f 0.37 
2-35 f 0-06 
3.1 1 f 0-72 
2.35 f 0.09 

f (4 %, 

39500 

20 

2.48 
2.003 
0.727 
3.21 
2.42 
2.56 
2.30 
2-42 
2.58 
2.36 
2.44 
2.36 
2.40 
2.46 
2.39 
2.56 
2.61 
2.50 

2.48 f 0.18 
2.58 f 0.36 
2.43 +_ 0.09 
2-50 f 0.09 
2.41 & 0.05 

f (2 %) 
TABLE 1. Wavelengths 21/d of individually measured Taylor vortices with the mean wavelength 
of the entire column and column sections, together with the standard deviations; in the narrcw 
and wide gap at different Taylor numbers. 

that  a t  T = 11 300c the wavelength was h = 2.54, after a slow increase of the Taylor 
number. And in 11, figure 10, it was shown that after sudden starts the wavelength 
ranged from 2.2 to  2.4 a t  lOOOOT,. But no evidence for a dependence on initial con- 
ditions was noted. The experiments with the wide gap have therefore been repeated. 
The fluid used in these experiments was water, as in the case of the narrow gap. The 
results of sudden start experiments (at least 20 experiments a t  each point) and of 
slow acceleration experiments are plotted in figure 9. The open circle marked with a 
cross shows the average wavelength of ten slow acceleration experiments. When a 
wavelength was once established by this procedure, h did not change if the Taylor 
number was subsequently increased slowly or quickly to  the highest Taylor number 
tried T = 40000Tc. The wavelengths obtained after sudden starts are smaller but are, 
within the experimental error, compatible with the average wavelength of slow 
acceleration experiments. The wavelength after sudden start experiments in the wide 
gap coincide, within the experimental error, with the wavelength observed after 
sudden start experiments in the narrow gap, when the Taylor number is greater than 
1OOOT,. Note that the absolute value of the experimental errors on figure 9 is larger 
than on figure 3, because of the reduced number of vortex pairs in the column. 
The standard deviation of the wavelength after sudden start experiments with the 
large gap was about 0-9 times f 1 ring, which is very close to the systematic error of 
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the wavelength measurement. Since, with the wide gap, there are usually only 22 
rings in the column, the systematic uncertainty of h is consequently fairly large 
( -  5 %). The uncertainty of the wavelength of all vortices in the wide gap has been 
measured and is shown in the last column of table 1.  With the wide gap there is, as 
figure 9 shows, no clear-cut dependence of the wavelength on the initial conditions, 
though the wavelength after sudden starts was on the average shorter than the 
wavelength after a slow acceleration a t  the same Taylor number. The failure to find 
an unambiguous consequence of the initial conditions seems to be due to two reasons. 
(1) Doubly periodic flow in the wide gap never develops many azimuthal waves, which 
seems to be necessary for a substantial increase of the axial Wavelength. Consequently 
the difference in axial wavelengths after sudden starts and quasi-steady experiments 
must be smaller with a wide gap. (2) The resolution of the measurements (which is 
5 A )  decreases with increased gap width (if the column length is the same). Smaller 
effects of initial conditions can therefore not be identified clearly. 

We have finally checked whether a finite azimuthal disturbance has a significant 
effect on turbulent Taylor vortices. As in a previous experiment with laminar axi- 
symmetric Taylor vortex flow (Koschmieder 1975), an oval brass bar 1.25 cm wide at  
its bottom and 0.3 cm deep at its apex (corresponding to 17 yo of the gap width) was 
attached to the inside of the glass cylinder over the entire length of the column. AS 
in the laminar case such a disturbance causes a wake to form behind the brass bar 
which extends in the turbulent flow not further than one times the width of the bar. 
There is, within the experimental error, no noticeable effect of the disturbance on the 
wavelength, either after slow acceleration or after sudden starts. In  other words, the 
turbulent vortices are stable against such a finite azimuthal disturbance. 

5. Discussion 
The experiments described above have shown that the flow of a fluid in the gap 

between a rotating inner and stationary outer vertical cylinder at  very high Taylor 
numbers is well organized in the form of toroidal turbulent Taylor vortices of very 
uniform size. It was found that the wavelength of the turbulent vortices is substantially 
larger than the critical wavelength of laminar Taylor vortices. Taken together with 
earlier observations of Pai (1943) and Schultz-Grunow & Hein (1956) and the observa- 
tions in I and 11, the present observations seem to make it certain that the wave- 
length of turbulent vortices is indeed larger than A,. We believe this to be a significant 
fact. It is known from experimental observations that the wavelength of convective 
motions caused by heating from below (the BBnard instability) increases with in- 
creased supercritical Rayleigh number. Considered together the increase of the wave- 
length in B6nard convection and Taylor vortex flow may express a more general 
feature of such instabilities. A discussion of a possible qualitative explanation of the 
increase of the wavelength has been given elsewhere (Koschmieder 1978). 

A startling discovery of the experiments described above was the clear-cut de- 
pendence of the wavelength of the turbulent vortices on initial conditions as well as 
the surprising functional dimilarities in the behaviour of laminar axisymmetric 
Taylor vortices and turbulent axisymmetric Taylor vortices; namely the independence 
of the wavelength of axisymmetric vortices from the Taylor number and the existence 
of a continuum of steady non-unique states in both cases. We are not aware of a 
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theoretical explanation for these effects. To the best of our knowledge a theoretical 
analysis of turbulent Taylor vortex flow has not yet been made. The very recent 
review of nonlinear hydrodynamic stability, in particular of Taylor vortex flow, by 
DiPrima (1978) does not mention such a study either. We believe, however, that the 
above experiments made with a simple apparatus under unambiguous conditions 
using a conventional fluid provide good material to test theories of axisymmetric 
turbulence, which go back to the studies of Batchelor (1946) and have been pursued 
in recent years in particular with numerical methods, e.g. Lilly (1971) and Herring 
et al. (1974). 

We are, of course, aware of the great difficulties of a theoretical description of 
turbulent Taylor vortex flow. The difficulties originate from the truly nonlinear 
nature of the problem and will be enhanced if time-dependent initial conditions are 
to be considered. We believe that the wavelength, i.e. the size of the vortices, is of 
prime importance in the understanding of the problem. The velocity distribution for 
example depends obviously’on the wavelength of the flow. The essence of the experi- 
mental results presented in our study can, in principle, also be obtained by local 
velocity measurements, although that would be extraordinarily laborious. It will 
furthermore become increasingly difficult to extract meaningful data out of the rapidly 
increasing noise in the velocity distributions. 

A referee has pointed out to us that Dr F. R. Mobbs has likewise made an experimental 
study of Taylor vortices a t  very high Taylor numbers. His experiments show also the 
existence of axisymmetric turbulent Taylor vortices at  Taylor numbers up to 80 OOOT,. 
The results of this investigation are presented in the paper by Barcilon et al. (1979). 
The axial wavelength of the flow and the variations of h are not discussed in this 
paper. 

Financial support of the Bureau of Engineering Research to buy and machine the 
new inner cylinder of this apparatus is gratefully acknowledged. 
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