La fréquence de Compton : une propriété intrinsèque mesurable sans la constante de Planck

Trouver la fréquence de Compton à partir du résultat de la diffraction des électrons¹ par un cristal. Mesurer λ_{db} par Bragg.

Le but est de trouver f_0 expérimentalement sans faire intervenir h.

 $\mathbf{Bragg}^2: n\lambda_{db} = 2d\sin \theta$ → mesure de λ_{db} (réseau/cristal de pas d).

« Dans ce protocole, λ_{db} est **mesurée** par Bragg (et non calculée via $\lambda=h/p$) »

Accélération: U connu \rightarrow calcul de v (NR ou relativiste).

La longueur d'onde de de Broglie d'un électron est donnée par l'équation de de Broglie :

$$\lambda_{db} = \frac{h}{p}$$

lci h est la constante de Planck et p la quantité de mouvement de l'électron.

La longueur d'onde de de Broglie de l'électron est alors donnée par :

$$\lambda_{db} = \frac{h}{p} = \frac{h}{m_0 v}$$

Ici, nous pouvons substituer la masse au repos m_0 par son équivalent qui est la fréquence de Compton f_0 .

En partant de

$$E = hf_0 = m_0 c^2$$

On obtient

$$m_0 = \frac{hf_0}{c^2}$$

On substitue

$$\lambda_{db} = \frac{h}{m_0 v} = \frac{c^2 h}{h f_0 v}$$
$$\lambda_{db} = \frac{c^2}{f_0 v}$$

On isole f_0

$$f_0 = \frac{c^2}{\lambda_{db} v}$$

Les électrons sont accélérés dans un potentiel électrique U

$$v = \sqrt{\frac{2eU}{m_0}} \quad \text{``approximation non-relativiste''}$$

« Il est possible de connaître m_0 sans employé h. Le but ultime de la démarche est de trouver f_0 sans employé h et prouver que f_0 se trouve sans passer par h.»

On substitue v

$$f_0 = \frac{c^2}{\lambda_{db} \sqrt{\frac{2eU}{m_0}}}$$

« Valable pour $eU \ll m_0 c^2$; sinon, utiliser v(U) relativiste ci-dessous. »

Pour tenir compte des effets relativistes

$$\gamma = 1 + \frac{eU}{m_0 c^2}$$
, $v = c \sqrt{1 - \frac{1}{\gamma^2}}$

$$f_0 = \frac{c^2}{\lambda_{db} \, v(U)}$$

https://fr.wikipedia.org/wiki/Diffraction_des_%C3%A9lectrons

2. loi de Bragg

https://en.wikipedia.org/wiki/Bragg%27s_law

Valider avec: ChatGPT 5 Thinging, Gemini 2.5 Pro, Claude Sonnet 4.5

^{1.} Diffraction des électrons