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1. INTRODUCTION

1.1. Contexte et enjeux industriels

La région toulousaine est actuellement en pleine expansion économique et démographique.
La croissance du trafic aérien entraîne une augmentation sensible des nuisances sonores. À
cause de l’enclavement de l’aéroport actuel dans une zone urbaine, ce sont de 100.000 à 170.000
personnes, onze écoles, deux collèges, quatre lycées et deux écoles supérieures qui sont touchés
par la pollution sonore créée par le passage des avions. Ce nombre va encore augmenter si l’aé-
roport s’agrandit. De plus, l’augmentation prévisible de la taille des avions et du trafic aérien ne
laisse rien présager de bon si rien n’est fait pour diminuer le bruit émis par les aéronefs.

Ce problème, qui touche en particulier l’aéroport de Blagnac, est propre à toutes les zones
aéroportuaires internationales. On peut même penser que le problème est bien plus préoccupant
pour des villes comme Paris, Londres ou New York. Dans ce contexte, des normes internatio-
nales (par exemple la directive européenne 2002 /30/CE) ont été mises en place pour imposer
une réduction du bruit. Une diminution de 6 dB est envisagée d’ici à 2020. Ceci a motivé la
création de projets européens et internationaux, tant numériques qu’expérimentaux, dédiés à
l’étude du bruit généré par les aéronefs. On peut notamment citer le Noise Reduction Program
lancé par la NASA ou les programmes de recherche européens RAIN et Silencer.

1.2. Le bruit de bec

Afin de maîtriser, puis réduire le bruit émis, il convient d’agir à différents niveaux. Les
nuisances sonores émises par un avion se divisent en deux classes :

– le bruit des moteurs,
– le bruit aérodynamique.

Le bruit des moteurs a été fortement réduit pendant les 30 dernières années. Par exemple, l’em-
preinte sonore émise par un A320 au décollage est plus de dix fois inférieure à celle émise par
un tri-réacteur des années 1970 du même gabarit. Le bruit aérodynamique, quant à lui, est créé
principalement par les trains d’atterrissage et par les systèmes d’hypersustentation (becs et vo-
lets).

La prédominance de l’une ou l’autre de ces classes de bruit dépend de la phase de vol dans
laquelle se situe l’avion. Il est évident que lors du décollage pendant lequel les turbines sont
poussées à plein régime, c’est le bruit des moteurs qui est prépondérant. Cependant, lors de la
phase d’approche, il est plus difficile de se prononcer. Des études ont révélé que les deux classes
de bruit étaient de niveau comparable. Étant donné les progrès accomplis pour diminuer le bruit
des moteurs, il convient de s’intéresser maintenant au bruit d’origine aérodynamique. Dans ce
cadre, des mesures en vol ont été effectuées dans les années 1990 pour cartographier les sources
de bruit en phase d’approche. Les principales conclusions de ces mesures sont exposées dans le
paragraphe suivant.



– 9 –

NOVEMBRE 2005

1.2.1. Mesures en vol

En phase d’approche, les moteurs sont au ralenti, les volets sont braqués et les becs com-
plètement déployés, et le bruit d’origine aérodynamique représente environ la moitié du bruit
émis. Les sources de bruit aérodynamique sont au nombre de trois : les trains d’atterrissage, les
volets et les becs.

De nombreuses études expérimentales menées à l’École Centrale de Lyon (Roger [6, 7]), à
l’ONERA et au DLR (Piet, Michel et Böhning [8], Dobrzynski [9,10]) ou chez Boeing (Guo [1])
montrent que parmi les trois sources potentielles citées ci-dessus, c’est le bruit émis par le bec
qui est prédominant (cf fig. 1.1).

Fig. 1.1 – Bruit émis par les systèmes d’hypersustentation (Guo [1])

Cette observation cruciale pousse tout esprit curieux à examiner les phénomènes physiques
qui se déroulent autour du bec. La complexité de l’écoulement, de la géométrie, ainsi que l’enjeu
du problème font de l’étude du bruit émis par le bec un sujet tout à fait passionnant. Plusieurs
laboratoires dans le monde entier se sont penchés sur le sujet ; le paragraphe suivant expose les
principaux résultats des études expérimentales et numériques menées.

1.2.2. Description de l’écoulement autour d’un bec de bord d’attaque

Depuis quelques années, l’écoulement au sein de la cavité du bec et dans le voisinage du
bec est relativement bien décrit. Des études tant expérimentales que numériques ont permis de
dégager les principaux phénomènes se déroulant au sein de la cavité du bec, et aussi d’émettre
quelques hypothèses sur les mécanismes producteurs de bruit.



– 10 –

NOVEMBRE 2005

Dobrzynski [9], puis Storms [11] ont été les premiers à mettre en évidence expérimenta-
lement les deux traits caractéristiques de l’écoulement autour du bec en phase d’approche :
l’existence d’un gros tourbillon intra-cavitaire et d’un lâcher de tourbillons derrière le bord de
fuite du bec (cf figure 1.2). Ces deux phénomènes ont pu être retrouvés numériquement à la
NASA ou à l’ONERA en effectuant des calculs Navier-Stokes moyennés en régime station-
naire, dit “RANS” (Berkman [12], Manoha [3], Terracol [13]), ou en régime instationnaire, dit
“URANS” (Singer [14], Khorrami [2, 15–17], Choudhari [18]).

Fig. 1.2 – Écoulement au sein de la cavité du bec (Khorrami [2])

Le lâcher de tourbillons est vraisemblablement dû au développement d’instabilités derrière
le bord de fuite tronqué du bec. Le tourbillon intra-cavitaire est lui créé par l’enroulement de
la couche de cisaillement provenant du gradient de vitesse au niveau du point anguleux dans la
partie inférieure du bec.

L’écoulement dépend de façon non linéaire des conditions opératoires (angle d’incidence,
valeur du nombre de Mach, épaisseur du bord de fuite tronqué...). Par exemple Dobrzynski [10]
a mis en évidence que le bruit rayonné augmente comme la puissance 5 de la vitesse du fluide.
D’autres corrélations ont été effectuées, mais le but de ce rapport n’étant pas d’apporter une
description exhaustive des études effectuées, le lecteur intéressé pourra lire les références bi-
bliographiques données en fin de rapport.

1.2.3. Description du spectre sonore émis par le bec

Le spectre sonore émis par le bec possède une particularité (cf. fig. 1.3) : il contient un bruit
large bande d’une intensité de l’ordre de 80-85 dB dans les basses et moyennes fréquences (0-8
kHz) et un pic sonore à 95 dB dans les très hautes fréquences (40-50 kHz). Cette caractéristique
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a été mise en évidence par des travaux à l’École Centrale de Lyon (Roger & Pérennès [7]), à la
NASA (Mendoza [19], Hutcheson [20], Khorrami [21]) ainsi qu’à l’université de Notre Dame
(Olson [22]).

Fig. 1.3 – Spectre sonore émis par le bec (Guo [2])

Un lien a été établi entre les mécanismes physiques cités plus haut (lâcher de tourbillons et
tourbillon intra-cavitaire) et la particularité du spectre sonore émis par le bec (bruit large-bande
et pic sonore).

Les études menées par Storms [11], Khorrami [15,21], Singer [14] ont permis de relier le pic
sonore émis à haute fréquence au phénomène de lâcher de tourbillons dans le sillage du bord de
fuite du bec. En effet, pour certaines valeurs de l’angle d’incidence, le phénomène de lâcher de
tourbillons disparaît en même temps que le pic sonore. De plus, les deux phénomènes semblent
liés par une fréquence commune. En effet, la fréquence à laquelle sont émis les tourbillons
correspond à la localisation du pic sonore dans le spectre. Notons que les fréquences données
ne sont pas dans le domaine audible. Mais elles correspondent à des mesures ou à des calculs
effectués sur des modèles à l’échelle 1/10 en moyenne. Donc pour un nombre de Strouhal
St = Urf/d de 0,2 basé sur l’épaisseur réelle (donc 10 fois plus grande) du bord de fuite
tronqué, cela nous donne des fréquences réelles environ dix fois inférieures, soit de l’ordre de
4-5 kHz. Donc le spectre réel se trouve bien dans le domaine audible.
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Le bruit large-bande a fait l’objet d’études récentes (Guo [1,23], Mendoza [19], Khorrami [2,
16], Agarwal [5, 24, 25]) qui l’ont relié au tourbillon central et à la couche de cisaillement. Le
caractère bidimensionnel de l’écoulement et la géométrie non cartésienne rendent l’étude du
problème très complexe tant du point de vue de la modélisation que du traitement numérique.
C’est pourquoi la littérature est encore pauvre en résultats satisfaisants établissant un lien clair
entre le bruit large-bande, la couche de cisaillement et le tourbillon central. Les résultats les
plus prometteurs sont obtenus pour l’instant par Agarwal [5] qui a développé un modèle semi-
empirique (utilisant la Boundary Element Method) pour la prédiction du bruit large-bande.

1.2.4. Calcul du bruit rayonné en champ lointain

Les outils utilisés pour la prévision du bruit rayonné en champ lointain sont nombreux. Ils
peuvent être basés sur l’analogie de Lighthill ou sur les équations de Ffowcs Williams et Haw-
kings, ou plus “expérimentaux” comme le modèle semi-empirique de Tam & Pastouchenko [26]
ou celui d’Agarwal. L’ONERA a développé une méthode hybride en divisant le domaine de
calcul en trois sous-domaines : un calcul LES pour le champ proche, un calcul de propagation
acoustique utilisant les équations d’Euler linéarisées et enfin une méthode intégrale de type Kir-
chhoff pour le calcul du bruit rayonné en champ lointain (cf. fig. 1.4).

Fig. 1.4 – Méthode hybride pour le calcul du bruit rayonné en champ lointain (Manoha [3])

Toutes ces méthodes donnent des résultats satisfaisants, mais ce sont des méthodes globales
qui ne permettent pas une étude fine des phénomènes physiques. Notamment, il est difficile
d’isoler les différents modes propres qui se développent dans le milieu, que ce soient des modes
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acoustiques ou hydrodynamiques. De nombreux phénomènes ont lieu, qui sont vraisemblable-
ment couplés entre eux (Takeda [27, 28], Olson [22]), liés par des phénomènes de résonance
ou de rétroaction. On peut penser par exemple que le lâcher de tourbillons vient exciter un des
modes propres de la cavité, qui entre alors en résonance, créant une source sonore suffisam-
ment intense, par le biais des interactions avec les parois, pour rayonner en champ lointain.
Storms [11] a émis l’hypothèse qu’une instabilité bidimensionnelle de Kelvin-Helmholtz se
développait dans la cavité et était amplifiée par une rétroaction au niveau du bord de fuite.

1.3. Objectifs de l’étude

Étant donné la richesse du sujet, le présent rapport s’attachera uniquement à l’étude de la
partie “bord de fuite”. L’étude complète du sujet fait l’objet d’une thèse en cours à l’ONERA
Toulouse dont ce rapport fera partie.

L’ONERA dispose d’un savoir-faire important en matière de simulation des écoulements,
ainsi qu’en calculs de stabilité. L’objectif de l’étude présente est d’utiliser ces compétences afin
de calculer la fréquence de lâcher de tourbillons derrière le bord de fuite tronqué du bec. On
utilisera un écoulement moyen ainsi qu’un code de stabilité disponibles à l’ONERA. Le code
sera étendu pour traiter le cas particulier du sillage derrière le bord de fuite du bec.

Dans la première partie, on expose la théorie de la stabilité linéaire. Les notions de stabilité
locale, globale, convective et absolue seront définies. Enfin, on mettra en place les différents
outils théoriques et numériques qui seront utilisés pour le calcul de stabilité. La seconde partie
traite du calcul de stabilité dans le sillage du bord de fuite. On y décrira la géométrie du pro-
blème et les profils qui seront à la base de l’étude de stabilité. Enfin on appliquera la théorie de
la stabilité linéaire pour déterminer la fréquence du lâcher de tourbillons et les résultats seront
commentés et confrontés aux résultats existants.
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2. THÉORIE DE LA STABILITÉ LINÉAIRE

2.1. Introduction

La dynamique complexe de certains écoulements, comme celui autour du bec décrit pré-
cédemment, résulte du développement d’instabilités dans le milieu. La théorie de la stabilité
permet de dégager les caractéristiques principales du milieu perturbé pour un coût de calcul
mineur par rapport à un calcul CFD complet.

La théorie de la stabilité exposée ci-après s’inspire largement des articles de référence de
Bers [29], de Huerre & Monkevitz [4, 30] et de Huerre & Rossi [31]. Elle se situe dans le
contexte des écoulements ouverts, non visqueux et quasi-parallèles. D’autre part on supposera
que l’écoulement est lentement variable suivant la direction de déplacement du fluide. Les per-
turbations seront considérées comme petites devant l’écoulement de base, ce qui nous placera
dans un régime linéaire.

2.2. Stabilité des écoulements

Les écoulements peuvent être classés en deux catégories : stables ou instables. Une pertur-
bation introduite dans un écoulement stable sera amortie, et l’état de base sera retrouvé en un
temps fini. À l’inverse, un écoulement instable va amplifier une perturbation et sa dynamique
basculera vers un état différent de l’état de base non perturbé.

2.2.1. Définition de la stabilité d’un écoulement

Avec les hypothèses effectuées en introduction de cette partie, le fluide est régi par les équations
d’Euler. En présence de sources, la linéarisation de ces équations autour d’un état de référence
V0 conduit à un système d’équations aux dérivées partielles de la forme :

L(∂x, ∂y, ∂z, ∂t)V (x, y, z, t) = S(x, y, z, t), (2.1)

où x est la direction suivant l’écoulement, y la variable transversale, z la dernière coordon-
née complétant le repère direct, t le temps, et L(∂x, ∂y, ∂z, ∂t) est un opérateur linéaire faisant
intervenir les dérivées partielles des dimensions d’espace et de temps. V est le vecteur perturba-
tion et S une distribution de sources. Dans la suite, on considérera, par souci de simplicité, que
le système est mono-dimensionnel en x. Cela ne modifie en rien les notions générales de stabi-
lité introduites ci-après. Les propriétés de symétrie et d’invariance du système nous conduisent
à chercher la solution sous la forme d’une onde :

V (x, t) = Ṽ ei(αx−ωt), (2.2)

où Ṽ est une fonction d’amplitude indépendante des variables x et t, α est le nombre d’onde et
ω la pulsation, a priori complexes.
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Cette forme conduit, avec des conditions aux limites homogènes (voir paragraphe 2.3.2), et
en l’absence de sources (S = 0), à un problème aux valeurs propres admettant des solutions
non nulles uniquement si α et ω satisfont la relation de dispersion

D(α, ω) = 0. (2.3)

Les modes temporels font référence aux cas où la pulsation complexe est calculée par une
résolution de la relation de dispersion avec des valeurs réelles de α. Les branches spatiales font
référence aux cas où le nombre d’onde complexe α est calculé par une résolution de la relation
de dispersion pour ω réel donné.

D’une manière plus générale, on peut retrouver cette relation de dispersion en introduisant
la fonction de Green g(x, t) pour le système (2.1) définie par :

L(∂x, ∂t)g(x, t) = δ0(x)δ0(t). (2.4)

La fonction de Green représente la réponse impulsionnelle à une source localisée à l’ori-
gine temporelle et spatiale. On peut alors définir la notion de stabilité linéaire d’un écoulement
comme suit [30] :

Définition 1 (Milieu linéairement stable)
Un milieu est dit linéairement stable si limt→∞ g(x, t) = 0 sur tout rayon x/t = cste.

Définition 2 (Milieu linéairement instable)
Un milieu est dit linéairement instable si limt→∞ g(x, t) = ∞ sur au moins un rayon
x/t = cste.

Si l’on définit la transformée de Fourier de la fonction de Green de la manière suivante :

G(α, ω) =
1

(2π)2

∫
F

∫
L

g(x, t)ei(αx−ωt)dω dα, (2.5)

le système (2.4) devient :
D(α, ω)G(α, ω) = ei(αx−ωt),

et donc on peut revenir à la fonction de Green dans l’espace (x, t) par la relation :

g(x, t) =
1

(2π)2

∫
F

∫
L

ei(αx−ωt)

D(α, ω)
dω dα. (2.6)

Le choix des contours d’intégration F dans le plan complexe (αr, αi) et L dans le plan com-
plexe (ωr, ωi) est assez délicat. Il n’existe aucune perturbation dans le milieu pour t < 0, donc
la fonction de Green est nécessairement nulle. C’est ce qu’on appelle couramment le principe
de causalité. Afin de respecter ce principe, on choisit L au-dessus de toutes les singularités
de l’intégrande (racines de la fonction de dispersion) et on ferme le contour à l’infini par un
demi-cercle supérieur pour t < 0 et par un demi-cercle inférieur pour t > 0 (cf. fig. 2.1.(a)
partie gauche). Pour le contour d’intégration F dans le plan complexe du nombre d’onde, on
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Fig. 2.1 – Localisation des contours d’intégration (Huerre & Monkevitz [4])

choisit initialement l’axe réel et on clôt le contour par un demi-cercle inférieur pour x < 0
et par un demi-cercle supérieur pour x > 0 (cf. fig. 2.1.(a) partie droite), le terme αix dans
l’exponentielle de l’intégrande devant être positif afin d’assurer la convergence de l’intégrale.

En appliquant le théorème des résidus et une méthode d’approximation, on peut montrer
(Huerre & Monkevitz [4, 30]), que la réponse pour des temps asymptotiquement longs prend la
forme simplifiée suivante :

g(x, t) ∼ ei(α∗x−ω(α∗)t) (2.7)
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où α∗ est un point stationnaire de la phase, c’est à dire un point tel que :

∂ω

∂α
(α∗) =

x

t
. (2.8)

La fonction de Green (2.7) décrit l’évolution dans le plan (x, t) d’un paquet d’onde dont la
vitesse de groupe est donnée par la relation (2.8). Le long de chaque rayon x/t = cste au sein
de ce paquet d’onde, la réponse pour t → ∞ est dominée par un unique nombre d’onde α∗

défini par (2.8). De plus, le taux de croissance temporel pour chaque rayon se réduit à eσtt avec :

σt = ωi(α
∗) − (x/t)α∗

i . (2.9)

D’après les définitions 1 et 2 de la stabilité linéaire d’un écoulement, pour qu’on ait une
instabilité, il suffit que la fonction de Green tende vers l’infini pour t → ∞ sur au moins
un rayon. En particulier, si pour le rayon de taux d’amplification maximal, cette propriété est
vérifiée, le milieu sera instable. À l’inverse, si pour ce même rayon, la fonction de Green tend
vers 0 pour des temps asymptotiquement longs, le milieu sera stable. Donc, il suffit d’examiner
le comportement du rayon pour lequel le taux d’amplification est maximal pour déterminer la
stabilité du milieu.

Or, dans la plupart des cas qui nous intéressent, le taux d’amplification temporel ωi(α) atteint
une valeur maximale ωmax

i ≡ ωi(α
max) en αmax réel tel que

∂ωi

∂α
(αmax) = 0 .

Le long du rayon particulier x/t = ∂ω/∂α(αmax), pour lequel on a donc α∗ = αmax, le taux
d’amplification temporel vaut σt = ωmax

i puisque α∗
i = 0, et on voit que cette valeur est la plus

grande que σt puisse atteindre.
Ainsi, le couple (αmax, ωmax

i ) définit le rayon x/t le long duquel le taux d’amplification maxi-
mal est atteint. Ceci nous amène à définir le critère de stabilité linéaire suivant :

Critère de stabilité linéaire :

Soit ωmax
i tel que

∂ωi

∂α
(αmax) = 0 en αmax réel.

Alors si :
– ωmax

i > 0 le milieu est linéairement instable,
– ωmax

i < 0 le milieu est linéairement stable.
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2.2.2. Notions d’instabilité absolue et convective

Définition
Dans le paragraphe précédent, nous avons mis en place un critère pour déterminer simple-

ment la stabilité d’un milieu à partir de la relation de dispersion. Mais parmi les écoulements
instables, on peut distinguer deux comportements. L’écoulement sera dit absolument instable
si la perturbation se propage dans tout le domaine et contamine la totalité de l’écoulement (cf.
fig. 2.2.(a)). L’écoulement sera dit convectivement instable si toute perturbation initialement
introduite dans l’écoulement de base est convectée loin de la source (cf. fig. 2.2.(b)). Les défi-
nitions qui suivent s’inspirent largement de l’article de référence de Bers [29], ou des articles
plus récents de Huerre & Monkevitz [4, 30] ou de Huerre & Rossi [31].

En se référant à la définition de la fonction de Green, on peut poser les définitions suivantes
pour les notions de stabilité convective et absolue [30] :

Définition 3 (Instabilité absolue)
Un milieu sera dit absolument instable si limt→∞ g(x, t) = ∞ le long du rayon

x/t = 0.

Définition 4 (Instabilité convective)
Un milieu sera dit convectivement instable si limt→∞ g(x, t) = 0 le long du rayon
x/t = 0.

Il est assez délicat de prévoir l’évolution de la fonction de Green. Donc comme précédem-
ment, on va exposer un critère plus aisé à manipuler pour déterminer si un écoulement est
absolument ou convectivement instable.

Critère d’instabilité absolue
On se place dans le cadre des écoulements quasi-parallèles, c’est à dire dans le cas où la

composante de la vitesse transversale est petite devant la vitesse longitudinale. On considère
donc qu’on a un profil de base de la forme 
V = V (y)
ux. En introduisant une perturbation dans
ce profil puis en linéarisant les équations d’Euler, on retrouve le système (2.1). Donc la réponse
du milieu à la perturbation est fixée par le comportement de la fonction de Green donnée par
la relation (2.6). En particulier, d’après les définitions 3 et 4, le caractère absolu ou convectif
d’une instabilité est déterminé par le comportement de cette fonction le long du rayon x/t = 0.

Soit α0 un point stationnaire de la phase sur le rayon x/t = 0. Par définition (voir rela-
tion 2.8), ce nombre complexe correspond à une onde de vitesse de groupe nulle :

∂ω

∂α
(α0) =

x

t
= 0.

On lui associe une fréquence définie par ω0 ≡ ω(α0), communément appelée la fréquence ab-
solue. La définition du taux d’amplification temporel absolu vient naturellement par la relation

ω0,i ≡ ωi(α0).
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Fig. 2.2 – Évolution spatio-temporelle de la fonction de Green. Absolument instable en (a), convectivement instable
en (b), et stable en (c). (Agarwal [5])

D’après la relation (2.7), la fonction de Green pour t → +∞, sur le rayon x/t = 0 s’écrit :

g(x, t) ∼ eω0,itei(α0x−ω0,rt), (2.10)

où ω0,r est la partie réelle de la pulsation absolue ω0.
On voit apparaître maintenant le rôle du taux d’amplification temporel absolu ω0,i : c’est

lui qui va déterminer l’évolution temporelle de la fonction de Green sur le rayon x/t = 0. En
effet, si ω0,i > 0, le facteur eω0,it présent dans la relation (2.10) va diverger quand t → +∞.
Par conséquent pour ω0,i > 0, on aura limt→∞ g(x, t) = ∞ le long du rayon x/t = 0. Donc
d’après la définition 3, on sera en présence d’une instabilité absolue. À l’inverse, si ω0,i < 0,
le facteur eω0,it présent dans la relation (2.10) va tendre vers 0 quand t → +∞, et on aura
limt→∞ g(x, t) = 0 le long du rayon x/t = 0. Donc d’après la définition 4, on sera en pré-
sence d’une instabilité convective. Ceci nous conduit à la définition du critère d’instabilité ab-
solue/convective suivant :
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Critère d’instabilité absolue/convective :

Soit α0 tel que
∂ω

∂α
(α0) = 0, et ω0,i ≡ ωi(α0).

Alors si :
– ω0,i > 0 le profil est absolument instable,
– ω0,i < 0 le milieu est convectivement instable.

Pour déterminer la valeur de la pulsation absolue ω0, l’idée de base, attribuée à Briggs dans
la littérature, est de regarder ce qui se passe lorsqu’on “abaisse” le contour d’intégration L.
Pour respecter le principe de causalité, on choisit initialement L au-dessus des modes temporels
ω(α) (cf. fig. 2.1.(a) gauche). De plus, supposons pour simplifier l’existence d’un seul mode
temporel ω(α) donnant lieu à deux branches spatiales α+(ω) et α−(ω). Et supposons que pour L
suffisamment haut, les branches spatiales α+ et α− soient de part et d’autre de F (cf. fig. 2.1.(a)
droite). Il faut bien avoir à l’esprit que les modes temporels et les branches spatiales sont reliés
entre eux par le biais de la relation de dispersion. Donc une modification du contour L dans le
plan de la pulsation va automatiquement entraîner une modification du contour F dans le plan
du nombre d’onde, et inversement.

Lorsqu’on abaisse progressivement le contour d’intégration L, ce qui revient à diminuer la
valeur de ωi, les deux branches spatiales se rapprochent l’une de l’autre. En diminuant encore
la valeur de ωi, une des branches vient traverser l’axe réel, et on est donc obligé de modifier
le contour d’intégration F afin d’éviter les singularités (cf. fig. 2.1.(b) droite). Deuxième effet
de la relation de dispersion, en modifiant le contour d’intégration F , on vient modifier l’allure
du mode temporel, et donc la position du contour L qui doit rester au-dessus des singularités
(cf. fig. 2.1.(b) gauche). Ce processus de déformation simultanée des contours L et F prend fin
lorsque les deux branches spatiales se rencontrent. Le contour F est alors “pincé” par α+ et α−,
et le mode temporel vient toucher le contour L (cf. fig. 2.1.(c)). Le pincement a lieu précisément
au point α0 où la vitesse de groupe ∂ω/∂α est nulle. Associé à ce point de pincement, apparaît
un point de rebroussement sur le mode temporel. Ce point correspond à la pulsation absolue ω0

associée au nombre d’onde absolu α0.
Et donc d’après le critère d’instabilité absolue/convective établi précédemment, grâce à ce

procédé, on est capable de déterminer si un écoulement est absolument ou convectivement in-
stable : si la valeur de ω0,i associée à la pulsation absolue trouvée au point de rebroussement est
positive, on est en présence d’une instabilité absolue, sinon on est en présence d’une instabilité
convective.

Toutefois, dans certains cas, un point de rebroussement apparaît dans le plan du nombre
d’onde mais sans permutation des branches spatiales ni pincement. Dans ce cas, la fréquence
trouvée n’est pas la fréquence absolue. Donc il faut être très vigilant sur l’évolution des branches
spatiales lors de ce processus.

En pratique, on fixe d’abord une valeur pour ωi (ce qui revient à fixer la “hauteur” de L),
puis on calcule αr et αi en fonction de ωr en résolvant le problème aux valeurs propres. Puis
on diminue la valeur de ωi d’un pas donné, et on réitère la résolution du problème aux valeurs
propres. Lors de chacune de ces étapes, on trace les diagrammes de stabilité (ωr, αr), (ωr, αi)
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et (αr, αi) (ce qui équivaut aux modes temporels et aux branches spatiales) à la recherche du
point de rebroussement et du point de pincement. Comme notre étude porte sur la recherche
d’instabilités absolues, on ne s’intéressera pas à ce qui se passe pour ωi < 0.

Critère de Bers
Un mode peut-être amplifié temporellement ou spatialement. Dans le cas d’une étude tem-

porelle, il suffit d’appliquer le critère précédent. Mais dans le cas d’une étude spatiale, cela va
dépendre du sens de propagation du mode et du signe de αi. Bien sûr, on ne peut parler de “sens
de propagation” que dans le cas d’une instabilité convective. Donc le critère que l’on va expo-
ser permet, dans le cas d’une étude de stabilité spatiale, de déterminer si un mode spatial est
amplifié ou non, et d’obtenir sa direction de propagation. Ce critère repose essentiellement sur
le principe de causalité (cf. paragraphe 2.2.1 sur la définition de la stabilité d’un écoulement).
La démonstration du critère ne sera pas exposée en détail. Le lecteur curieux pourra se référer à
l’article de Bers [29].

L’idée est d’observer la migration des modes spatiaux en faisant tendre L vers l’infini. D’une
manière générale, on observe deux comportements :

– le mode reste dans son quart-plan d’origine sans traverser l’axe réel (cf. fig. 2.3 cas (b)),
– le mode traverse l’axe réel (cf. fig. 2.3 cas (a) et (c)).
En se basant sur des raisonnements analogues à ceux effectués dans le cas du critère d’insta-

bilité absolue, Bers montre que dans le premier cas, le mode est amorti, et que dans le second
cas le mode est amplifié. Pour obtenir la direction de propagation du mode, on regarde le signe
de la partie imaginaire du mode spatial pour F sur l’axe réel. Si αi < 0, le mode se propage
vers l’aval, et si αi > 0, le mode se propage vers l’amont.

Dans la pratique, on fixe une valeur initiale pour ω, et on calcule les modes spatiaux. Ensuite
on garde la valeur initiale de ωr, et on augmente progressivement la valeur de ωi, en suivant la
migration des modes spatiaux dans le plan (αr, αi). Pour d’autres exemples d’application de ce
critère, on pourra se référer au rapport de J.-Ph. Brazier [32].

2.2.3. Critères de détermination du mode global

Le mode global, par opposition au mode local, est un mode qui s’étend sur tout le champ
de vitesse de l’écoulement, résultat de l’interaction et de la synchronisation des instabilités
locales. Soit L, une longueur caractérisant le développement spatial du mode global, et l une
longueur d’onde caractérisant une instabilité locale. Dans le cadre d’une approche multi-échelle,
on définit χ la variable spatiale relative au mode global, et x la variable spatiale relative aux
modes locaux. On introduit maintenant un paramètre

ε ∼ l

L
� 1.

Ce paramètre ε nous permet de découpler les évolutions spatialement “rapides” des instabi-
lités locales, de l’évolution “lente” du mode global en posant

χ = εx.
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Fig. 2.3 – Critère de Bers ; (a) mode amplifié se propageant vers l’amont ; (b) mode amorti ; (c) mode amplifié se
propageant vers l’aval.

Cette relation a pour effet de découpler les évolutions globales et locales dans le système
d’équations (cf. Chomaz, Huerre & Redekopp [33]). Ainsi l’onde définissant un mode global
prend la forme

V (x, t; χ) = Ṽ (x; χ)e−iωGt,

où ωG représente la pulsation du mode global. Le but est maintenant de trouver un moyen pour
déterminer la valeur de cette fréquence globale ωG.

Le critère de Bers permet de déterminer si un mode est amplifié ou non, et le critère d’insta-
bilité absolue si le profil étudié est absolument ou convectivement instable. Ces critères s’ap-
pliquent localement, pour un profil donné en une station de l’écoulement. Mais pour l’instant
nous ne sommes pas capables de donner la fréquence du mode global de l’écoulement.

Différents critères de sélection de la fréquence globale ont été proposés par le passé, dont
le succès dépend du type d’écoulement considéré. Le critère de résonance hydrodynamique de
Koch [34] propose que la valeur de la fréquence du mode global soit donnée par la valeur de
la fréquence absolue au niveau de la dernière station pour laquelle l’écoulement passe d’une
zone d’instabilité absolue à une zone d’instabilité convective. C’est à dire qu’en présence d’une
poche d’instabilité absolue, la valeur de la fréquence locale absolue à la sortie de la poche
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donne la valeur de la fréquence du mode global. D’après le critère de croissance maximale de
Pierrehumbert [35], elle est donnée par la fréquence absolue du mode ayant le plus grand taux
d’amplification absolue ω0,i. Le critère de croissance initiale de Monkewitz et Nguyen [36] pro-
pose qu’elle soit fixée par la valeur de la fréquence absolue au niveau de la première transition
convective/absolue de l’écoulement.

Sur des bases théoriques solides (approximation WKBJ), et dans le cadre de l’étude des
instabilités globales des couches de mélanges fortement non parallèles, Chomaz, Huerre et Re-
dekopp [33] ont établi un autre critère. Pour une relation de dispersion donnée ω(α; χ), où χ
représente la variable lente dans la direction de l’écoulement définie plus haut, la fréquence
complexe du mode global est donnée par :

ωG = ω0(χG),

où χG est tel que
∂ω0

∂χ
(χG) = 0.

L’applicabilité des critères va dépendre du type d’écoulement étudié et de la résolution spa-
tiale dans la direction de l’écoulement accessible pour effectuer les calculs. L’article de Mon-
kevitz et Nguyen donne à cet effet quelques pistes. Dans le cas d’un écoulement présentant
une poche d’instabilité absolue sans frontières solides, il convient d’appliquer le critère de ré-
sonance maximale de Pierrehumbert. En présence de frontières solides, il convient d’appliquer
plutôt le critère de résonance hydrodynamique de Koch. Dans tous les cas, le critère de Chomaz,
Huerre et Redekopp donne de bons résultats pourvu qu’on ait accès à la relation de dispersion
en fonction de χ.

Les outils théoriques de la stabilité linéaire ont été exposés et on a plusieurs fois évoqué la
nécessité de calculer une relation de dispersion et de résoudre un problème aux valeurs propres.
La partie suivante expose une méthode de résolution numérique des équations de stabilité utili-
sant une méthode de collocation spectrale.

2.3. Résolution numérique des équations de stabilité

2.3.1. Équations d’Euler linéarisées

On considère que le fluide est parfait, barotrope et soumis aux équations d’Euler 2D. Soit

u(x, y, t) =

(
u(x, y, t), v(x, y, t)

)
le champ de vitesse et ρ(x, y, t) la masse volumique du fluide.

Alors les équations d’Euler s’écrivent :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tρ +
−→∇ · (ρ
u) = 0

∂tu + u∂xu + v∂yu + ρ−1∂xp = 0

∂tv + u∂xv + v∂yv + ρ−1∂yp = 0

(2.11)
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De plus l’entropie est conservée le long des lignes de courant donc :

ds

dt
= 0. (2.12)

En outre, sous l’hypothèse de barotropie la pression s’exprime uniquement en fonction de la
masse volumique ρ et de l’entropie s :

p = p(ρ, s).

Donc la différentielle de la pression dp peut se mettre sous la forme :

dp =

(
∂p

∂ρ

)
s

dρ +

(
∂p

∂s

)
ρ

ds. (2.13)

avec l’hypothèse de fluide parfait p = ρrT , on peut montrer que :
(

∂p

∂ρ

)
s

= c2 =
γp

ρ
et

(
∂p

∂s

)
ρ

=
p

Cv
.

Et en particulier, en utilisant la relation de conservation de l’entropie (2.12) et la rela-
tion (2.13), on obtient :

dp

dt
= c2dρ

dt

Or les dérivées totales de ρ et p s’écrivent :

dρ

dt
=

∂ρ

∂t
+ 
u · −→∇ρ et

dp

dt
=

∂p

∂t
+ 
u · −→∇p

D’où, après substitution dans le système (2.11) :

⎧⎪⎨
⎪⎩

∂tp + γp(∂xu + ∂yv) + u∂xp + v∂yp = 0

∂tu + u∂xu + v∂yu + ρ−1∂xp = 0

∂tv + u∂xv + v∂yv + ρ−1∂yp = 0

(2.14)

Soit
(

U0(x, y), P0, ρ0(x, y)

)
, l’état de référence stationnaire du fluide, où 
U0 est une vitesse

uniquement longitudinale et P0 est une pression constante. On perturbe ensuite l’état de réfé-
rence (
U0, P0, ρ0) de la manière suivante :

⎧⎪⎪⎨
⎪⎪⎩

u = U0 + εu1

v = εv1

p = P0 + εp1

ρ = ρ0 + ερ1

(2.15)
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Afin de simplifier les équations, on fait l’hypothèse que l’écoulement est lentement variable
en χ ≡ εx, et en utilisant la méthode des échelles multiples (avec χ et x comme échelles), on
peut éliminer les dérivées suivant x des fonctions U0 et ρ0.

Ensuite, en introduisant les relations (2.15) dans le système (2.14) et en négligeant les termes
d’ordre ε2, on obtient le système d’EDP linéaires suivant :

⎧⎪⎨
⎪⎩

∂tp1 + ρ0c
2
0(∂xu1 + ∂yv1) + U0 ∂xp1 = 0

∂tu1 + U0 ∂xu1 + ∂yU0 v1 + ρ−1
0 ∂xp1 = 0

∂tv1 + U0 ∂xv1 + ρ−1
0 ∂yp1 = 0

(2.16)

Remarque : le terme ρ−1∂xp présent dans les équations de quantité de mouvement s’écrit :

ρ−1∂xp = (ρ0 + ερ1)
−1∂y(P0 + εp1)

= ρ−1
0 (1 + ερ−1

0 ρ1)
−1ε∂yp1 (car P0 est constant) .

Comme ε est petit, on peut faire un développement limité de (1 + ερ−1
0 ρ1) en ε, et négliger les

termes d’ordre 2 en ε. On obtient :

ρ−1∂xp = ερ−1
0 ∂yp1.

Ceci explique la disparition du terme ρ1 dans les équations (2.16).
Ensuite, on adopte l’approche classique des études de stabilité en écrivant les inconnues

(u1, v1, p1) sous la forme de modes normaux de nombre d’onde α et de pulsation ω :

⎧⎪⎪⎨
⎪⎪⎩

u1 = Fei(αx−ωt)

v1 = Gei(αx−ωt)

p1 = Pei(αx−ωt)

où F , G et P sont des fonctions uniquement de y. En introduisant ces relations dans le sys-
tème (2.16), on obtient :

⎧⎪⎨
⎪⎩

iρ0c
2
0α F + ρ0c

2
0 ∂yG + i(αU0 − ω)P = 0

i(αU0 − ω)F + ∂yU0 G + iαρ−1
0 P = 0

i(αU0 − ω)G + ρ−1
0 ∂yP = 0

(2.17)

Ce système est la base de notre étude de stabilité. Il est cependant incomplet, puisqu’il faut
lui adjoindre des conditions aux limites qui dépendront de la nature de l’écoulement (couche
de mélange, sillage...), de la géométrie du problème et de la présence éventuelle de parois. Le
traitement de ces conditions est exposé dans le paragraphe suivant.



– 26 –

NOVEMBRE 2005

2.3.2. Conditions aux limites

Dans la suite de l’étude on sera amené à poser deux types de conditions aux limites :
– un raccord à la solution analytique en milieu homogène,
– une condition de paroi.

Voyons dans un premier temps l’expression de la solution en milieu homogène.

Solution en milieu homogène
En partant du système de base (2.17), on tire

G = −i
∂yP

ρ0(αU0 − ω)
(2.18)

F =
−∂yU0G − ρ−1

0 iαP

ω − αU0

Donc en remplaçant dans l’équation de continuité, et en multipliant par (αU0−ω)c−2
0 , on obtient

l’équation de Rayleigh :

∂2
yyP −

[
∂yρ0

ρ0
+

2α∂yU0

αU0 − ω

]
∂yP +

[
(αU0 − ω)2

c2
0

− α2

]
P = 0 (2.19)

Soit (U+, ρ+, c+) le champ lointain homogène pour y → +∞, et (U−, ρ−, c−) le champ loin-
tain homogène pour y → −∞. L’équation de Rayleigh (2.19) dans le champ lointain devient :

∂2
yyP +

[
(αU± − ω)2

c2±
− α2

]
P = 0

La solution de cette équation est de la forme :

P± = A±eiλ±y + B±e−iλ±y

avec λ± = [M2
±(ω −α)2 −α2]1/2, où M± = U±/c±. Les valeurs des coefficients A±, B± et λ±

sont déterminées par la condition de décroissance de P à l’infini et par la position des coupures
pour la racine complexe présente dans l’expression de λ±.

Traitons en guise d’illustration le cas y → +∞. On a eiλ+y → +∞, si �(λ+) < 0. Donc
on place la coupure de la racine complexe sur R+ de façon à avoir 0 ≤ Arg(λ+) ≤ π. Sous
ces conditions, l’imposition de la condition de décroissance à l’infini implique B+ = 0. En
raisonnant de la même manière pour y → −∞ on trouve A− = 0.

Finalement en milieu homogène la solution de l’équation de Rayleigh est de la forme :

P+ = A+eiλ+y, pour la partie supérieure,

P− = B−e−iλ−y, pour la partie inférieure,

avec λ+ = [M2
+(ω − α)2 − α2]1/2.

et λ− = [M2
−(ω − α)2 − α2]1/2.
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Condition de raccord
Traitons le cas de la partie supérieure. D’après ce qui précède, on a P = A+eiλ+y. Donc, en

utilisant l’expression de G en fonction de ∂yP , on a :

∂P

∂y
= iλ+P = iρ0(ω − αU0)G.

Donc la condition de raccord à l’exponentielle dans la partie supérieure s’écrit :

[M2
+(ω − α)2 − α2]1/2P − ρ0(ω − αU0)G = 0.

De la même manière dans le domaine inférieur, elle s’écrit :

[M2
−(ω − α)2 − α2]1/2P + ρ0(ω − αU0)G = 0.

De cette manière, la solution calculée est raccordée de façon continue à la solution analy-
tique en milieu homogène.

Condition de paroi
En cas de présence d’une paroi, on impose une condition de vitesse normale nulle. Donc en

considérant que la paroi est parallèle à l’écoulement moyen, cela revient à imposer la condition :

G = 0 sur la paroi.

2.3.3. Résolution numérique du problème aux valeurs propres

La méthode de collocation spectrale
Le système (2.17) associé aux conditions aux limites homogènes (en l’absence de sources, le

second membre du système est nul) constitue un problème aux valeurs propres. Pour résoudre
ce système, on utilise ici une méthode de collocation basée sur les polynômes de Tchebichev.
De nombreux ouvrages l’étudient en détail (par exemple [37]), on se contentera ici d’en donner
les grandes lignes.

Les polynômes de Tchebichev sont définis sur [−1, +1] par Tk(σ) = cos[k cos−1 σ]. Les
points de collocation sont donnés par : σj = cos πj

N
, j = 0, 1, ..., N.

Soit V une fonction propre du problème. Alors V se décompose sur la base des polynômes
de Tchebichev de la manière suivante :

V (σ) =

N∑
k=0

akTk(σ).

On peut montrer que les dérivées première et seconde de V aux points de collocation s’ex-
priment en fonction des valeurs de V en ces mêmes points :

dV

dσ
(σj) = AV =

N∑
l=0

AjlVl, j = 0, ..., N
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où Vl = V (σl) et Ajk est un élément de la matrice de dérivation donnée par :
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ajk =
Cj

Ck

(−1)k+j

σj − σk
, (j 
= k)

Ajj = − σj

2(1 − σ2
j )

, (j 
= 0) et (j 
= N)

A00 =
2N2 + 1

6
= −ANN

(2.20)

avec
C0 = Cn = 2, Cj = 1 pour 1 ≤ j ≤ N − 1.

En effectuant cette décomposition pour chaque fonction d’amplitude F , G et P , on peut
se ramener à un problème aux valeurs propres matriciel généralisé. L’expression exacte du
problème dépend de l’approche qu’on adopte pour l’étude de stabilité. Dans le cas d’une étude
de stabilité spatiale, la valeur propre recherchée sera α, donc le problème aux valeurs propres
s’écrira sous la forme :

DsX = αEsX.

Dans le cas d’une étude temporelle, la valeur propre recherchée sera ω, donc le problème aux
valeurs propres s’écrira sous la forme :

DtX = ωEtX.

Les matrices D et E sont de taille 3N +3 et X est le vecteur [Fj, Gj , Pj] pour j de 0 à N . L’ex-
pression exacte des matrices D et E est donnée en annexe A. Le problème est résolu avec une
routine de la bibliothèque LAPACK qui fournit l’ensemble des valeurs propres et des vecteurs
propres.

L’inconvénient majeur de cette méthode est que les points de collocation sont imposés. Ils
sont resserrés près des bornes du domaine et plus lâches au centre. Cependant, la méthode de
décomposition sur la base des polynômes de Tchebichev est très efficace, et la convergence en
nombre de points est très rapide. Dans notre cas, entre 200 et 300 points sont amplement suffi-
sants. Le second inconvénient de cette méthode est la production de modes numériques artifi-
ciels. Ils sont aisément repérables par le fait qu’ils bougent avec le nombre de polynômes. Dans
la pratique il sera ainsi facile de les “éliminer” en faisant plusieurs calculs avec des nombres
de polynômes différents. Pour plus de détail sur le comportement de la méthode, on pourra se
référer au rapport de J.-Ph. Brazier [38].

Déshomogénéisation du système
Le problème aux valeurs propres qu’on a à résoudre peut s’écrire sous la forme MX = 0,

avec M = Ds − αEs ou M = Dt − ωEt, selon que l’on se place en théorie spatiale ou tempo-
relle. La matrice M est constituée de bloc 3x3 (voir Annexe B). Comme il n’y a qu’une seule
condition à chaque frontière, on écrit la condition limite à la place de l’équation de continuité et
on garde les deux équations de quantité de mouvement. En choississant comme vecteur inconnu
le vecteur :
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X =

⎛
⎝ F

G
P

⎞
⎠ ,

le problème s’écrit formellement sous la forme

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cond. lim. sup. · · · · · ·
qtté de mvmt 1 en σ0 · · · · · ·
qtté de mvmt 2 en σ0 · · · · · ·

... · · · ...
· · · continuité en σi · · ·
· · · qtté de mvmt 1 en σi · · ·
· · · qtté de mvmt 2 en σi · · ·

... · · · ...
· · · · · · cond. lim. inf.
· · · · · · qtté de mvmt 1 en σN

· · · · · · qtté de mvmt 2 en σN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F0

G0

P0
...
Fi

Gi

Pi
...

FN

GN

PN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

...

...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

On a donc une condition limite sur la première ligne de la matrice et une autre sur l’antépénul-
tième.

Le système est homogène et on ne peut le résoudre tel quel. Pour contourner le problème,
l’idée est de déshomogénéiser le système en substituant à la première condition limite une
condition non homogène. Par exemple, on peut choisir de normaliser la pression à 1 en un
point. Soit i0 tel que Pi0 = maxi∈{0..N} P . Alors on réécrit le système sous la forme suivante :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 (en j = 3i0 + 3) 0
qtté de mvmt 1 en σ0 · · · · · ·
qtté de mvmt 2 en σ0 · · · · · ·

... · · · ...
· · · continuité en σi · · ·
· · · qtté de mvmt 1 en σi · · ·
· · · qtté de mvmt 2 en σi · · ·

... · · · ...
· · · · · · cond. lim. inf.
· · · · · · qtté de mvmt 1 en σN

· · · · · · qtté de mvmt 2 en σN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F0

G0

P0
...
Fi

Gi

Pi
...

FN

GN

PN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
...

...

...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Ensuite on itère sur la valeur propre (α ou ω) avec un algorithme de Newton jusqu’à ce
que la condition limite originelle soit vérifiée. Enfin on obtient la solution par inversion de la
matrice. On peut ainsi converger sur un mode particulier en évitant le calcul complet du spectre.

2.4. Conclusion

Dans cette partie, toutes les bases théoriques nécessaires à la suite de notre étude ont été
posées. La notion de stabilité a été définie, et nous avons les outils nécessaires pour déterminer
la fréquence du mode global d’un écoulement parallèle. La méthode de résolution du problème
aux valeurs propres, ainsi que le traitement des conditions aux limites, ont été exposés ; il ne
reste plus qu’à utiliser cette méthode pour pouvoir appliquer le critère d’instabilité absolue sur
un écoulement donné.

La partie suivante s’attache à décrire le code de calcul utilisé, l’écoulement autour du bec,
ainsi que les différents profils dont la stabilité va être étudiée.
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3. ÉTUDE DE STABILITÉ DERRIÈRE LE BORD DE FUITE D’UN BEC

3.1. Introduction

Objectifs :
Comme on l’a vu en introduction, le phénomène de lâcher de tourbillons se développe dans

tout le sillage du bord de fuite et est réglé à une fréquence bien déterminée. La théorie de
stabilité exposée précédemment est parfaitement adaptée à l’étude de cet écoulement et à la
détermination de la fréquence du mode global sous-jacent. On va pouvoir appliquer le critère
d’instabilité et calculer la fréquence de lâcher de tourbillons.

Démarche :
Dans un premier temps, on effectuera une extraction de profils de vitesse et de masse volu-

mique à partir d’un calcul RANS, pour différentes stations en aval du sillage. Pour évaluer les
polynômes de Tchebichev aux points de collocation, ces profils seront interpolés avec une mé-
thode de type spline. Ensuite, pour chaque profil extrait, on calculera le spectre spatial complet,
et on appliquera le critère de Bers afin de ne retenir que les modes amplifiés. L’étape suivante, la
plus délicate, sera l’application du critère d’instabilité absolue pour déterminer la pulsation et le
nombre d’onde locaux absolus. On examinera aussi succinctement les vecteurs propres associés
aux modes amplifiés absolument instables. Enfin on s’intéressera à l’influence des conditions
aux limites sur l’instabilité absolue.

3.2. Description des profils étudiés

3.2.1. Géométrie et écoulement de base

Un calcul RANS sur une section d’aile hypersustentée a été effectué par S. Ben Khelil à
l’ONERA Châtillon (S. Ben Khelil, C. François, F. Moens et I. Mary [39]). Cette aile possède
un système complet d’hypersustentation : bec de bord d’attaque et volet. Notre intérêt sera porté
ici uniquement sur le bord de fuite du bec et son voisinage proche. La coordonnée longitudinale
sera notée ξ, la coordonnée transversale η, l’épaisseur du bord de fuite du bec d et on appellera I
le milieu du bord de fuite, origine du repère (cf. fig. 3.1). On choisit d’adimensionner la vitesse
par la célérité du son c et les coordonnées transversale et longitudinale par la demi-largeur du
bord de fuite d/2 (sans changement de notation). Par convention, η vaut 0 au milieu du bec,
est négative dans la partie inférieure de l’écoulement et positive dans la partie supérieure. La
vitesse longitudinale adimensionnée sera notée ul, la masse volumique ρ.

La principale caractéristique de l’écoulement dans le sillage est l’existence d’une zone de
recirculation juste derrière le bord de fuite. Elle peut être mise en évidence facilement par le
signe de la vitesse, ou l’allure des lignes de courants. On peut la caractériser en considérant
que le sillage est la superposition de deux couches de mélange. Dans chacune des couches, on
calcule deux paramètres R1 et R2 définis comme suit (Huerre & Rossi [31]) :
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Fig. 3.1 – Géométrie et données autour du bord de fuite

R1 = (U1 − Uc)/(U1 + Uc), pour la couche de mélange “inférieure”
R2 = (U2 − Uc)/(U2 + Uc), pour la couche de mélange “supérieure”.

U2 est la vitesse au-dessus du sillage, U1 la vitesse au-dessous du sillage et Uc la vitesse mini-
male. La zone de recirculation se situe là où Uc est négative donc lorsque les paramètres R1 et
R2 sont supérieurs à 1.

Pour calculer ces paramètres, on a besoin de connaître la valeur de la vitesse longitudinale le
long de trois lignes parallèles à l’axe (Iξ). Pour Uc on extrait ces valeurs le long de l’axe (Iξ),
pour U1 le long d’une ligne parallèle à l’axe (Iξ) dans la partie inférieure de l’écoulement et
pour U2 dans la partie supérieure de l’écoulement. Les positions des lignes d’extractions, ainsi
que les valeurs des vitesses extraites et extrapolées par Tecplot entre les nœuds du maillage sont
illustrées sur les figures 3.2(a) et 3.2(b). Le tableau 3.1 présente les valeurs de ces vitesses ainsi
que des paramètres R1 et R2 sur les 4 premières lignes de maillage (à ξ fixé) derrière le bord de
fuite du bec.

La figure 3.2(c) montre que la zone de recirculation est très petite. En effet, les paramètres
R1 et R2 ne sont supérieurs à 1 que sur une zone située à moins de 1.2 épaisseurs de bord de
fuite. Un examen plus précis en effectuant des extrapolations des valeurs entre les nœuds avec
Tecplot montre que la zone de recirculation prend fin pour 1.01d.
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(a) Position des lignes d’extraction
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(c) Évolution des paramètres R1 et R2

Fig. 3.2 – Étude des paramètres R1 et R2

Ligne de maillage ξ UC U1 U2 R1 R2

1 0 0 0,22997 0,27585 1 1
2 0.9 -1.58.10−2 0,23023 0,27571 1,1513 1,1248
3 1.8 -4,47.10−3 0,23049 0,27553 1,0438 1,0365
4 3 1,88.10−2 0,23089 0,27536 0,8493 0,8720

Tableau 3.1 – Valeurs des paramètres R1 et R2 sur les 4 premières lignes de maillage

Si on examine le maillage dans cette zone, on se rend compte que seules les trois premières
mailles derrière le bord de fuite sont dans la zone de recirculation. Ce constat est renforcé par
le tableau 3.1 puisque l’on voit que seules les trois premières lignes de maillage présentent des
paramètres R1 et R2 supérieurs à 1.



– 34 –

NOVEMBRE 2005

3.2.2. Extraction et interpolation des profils

Position des profils et pré-traitement

Les positions des lignes d’extraction sont visibles sur la figure 3.3. Elles sont parallèles au
bord de fuite et s’étendent depuis la paroi de la partie principale de l’aile jusqu’à la zone d’ho-
mogénéité de l’écoulement (cf. figure 3.3(a)). Trois profils sont extraits dans les deuxième,
troisième et quatrième mailles derrière le bord de fuite (cf. figure 3.3(b)). Dans la suite, ces pro-
fils extraits seront appelés “Complet x1”, “Complet x2” et “Complet x3”. Le terme “Complet”
signifie que le profil part de la paroi de la partie principale de l’aile.

D’après le paragraphe précédent, on voit que les deux premiers profils sont dans la zone de
recirculation, le troisième est en dehors. Les données dans la première maille sont trop impré-
cises et inexploitables pour un calcul de stabilité.

Les données extraites sont lissées avec Tecplot afin de gommer les éventuelles irrégulari-
tés dues aux extractions. La figure 3.4 présente les profils obtenus après extraction, lissage et
adimensionnalisation en fonction de la variable transversale η.

Les profils sont quasiment identiques sur une large zone allant de la couche limite du corps
principal à une dizaine d’épaisseurs de bord de fuite dans la zone inférieure de l’écoulement.
Il en est de même pour la zone supérieure pour η entre 5 et 10. Seules diffèrent clairement les
valeurs au centre du sillage. De plus on voit que les variations de masse volumique sont très
faibles ; on pourra considérer que le fluide est incompressible.

Interpolation

Les points sur lesquels ont été extraits les profils ne coïncident pas avec les points de collo-
cation. Donc il est nécessaire de faire une interpolation du profil, pour avoir accès à une valeur
en n’importe quelle valeur de η.

La méthode retenue ici est une interpolation par des splines. Le principe est d’utiliser un
polynôme pour représenter la courbe entre deux points d’extractions, avec un raccord en valeur
et en pente. Les polynômes utilisés dans cette étude sont de degré trois. Pour le calcul de la
spline, on a utilisé la librairie publique NetLib (www.netlib.org), qui fournit plusieurs routines
de construction et d’évaluation des splines et de leurs dérivées à partir de données quelconques.

Avantages de la méthode

Au niveau purement informatique, cette méthode possède l’avantage d’être très facilement
implémentable et de présenter un faible “coût” au niveau du temps de calcul et de la mémoire re-
quise. De plus, la routine utilisée ici offre la possibilité de choisir entre une interpolation exacte
ou une interpolation avec “lissage”. Cette option est très utile pour effacer les irrégularités et les
éventuelles “oscillations numériques”.

Limites de la méthode

Les dérivées de la vitesse interviennent dans le calcul de stabilité, et notamment la dérivée
seconde joue un rôle essentiel. En effet, d’après le théorème de stabilité de Rayleigh (Drazin
& Reid [40], Huerre & Rossi [31]), une condition nécessaire à l’existence d’une instabilité est
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(a) Position des profils sur le champ de vitesse longitudinale

(b) Position des profils sur le maillage

Fig. 3.3 – Position des lignes d’extraction
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la présence d’au moins un point d’inflexion dans le profil étudié. Donc la dérivée seconde doit
présenter autant de racines que de points d’inflexion dans le profil. Ici, elle ne doit donc avoir
que deux zéros, et il s’agit de ne pas rajouter de racines supplémentaires lors de l’interpola-
tion. Lorsqu’on effectue une interpolation exacte sur le profil, on voit apparaître des oscillations
numériques sur la dérivée seconde, qui risqueraient de créer des racines artificielles, et éventuel-
lement des instabilités qui n’existent pas physiquement. Il convient donc d’effectuer un lissage
et de s’éloigner légèrement de la fonction première pour éliminer ces oscillations.

Cependant, il est aussi très important de bien représenter la zone de recirculation du profil
puisque c’est elle qui va déterminer le caractère absolu ou convectif de l’instabilité. Toute la
difficulté de l’interpolation est de trouver une valeur de lissage permettant un calcul de la déri-
vée seconde assez précis et une bonne description de la zone de recirculation.

Un deuxième inconvénient de la méthode est sa grande sensibilité au nombre de points ser-
vant à l’extraction du profil. Et il s’agit là encore de trouver un subtil équilibre avec un nombre
de points suffisamment grand pour bien décrire le profil, mais pas trop grand pour éviter les
oscillations numériques.

Commentaires

Le code de calcul de stabilité a besoin d’un fichier de données pour chaque profil, pour le
calcul de la spline et l’interpolation des grandeurs aux points de collocation. Le choix des points
figurant dans ces fichiers est fait de façon empirique, par tâtonnement, en essayant de se rap-
procher du meilleur résultat en tenant compte des limites de la méthode évoquées plus haut.
D’autre part, des erreurs sont introduites sur les valeurs de la vitesse et de la pression dues aux
extractions et à l’interpolation entre les nœuds du maillage effectuée par Tecplot, et il est diffi-
cile de les quantifier.

Les valeurs “réelles” des dérivées premières et secondes sont inconnues, et on devra supposer
que celles qui sont calculées dans la spline sont suffisamment représentatives du profil de base.
Ces remarques nous conduisent à admettre que les calculs de stabilité ne donneront que des
valeurs qualitatives, un ordre de grandeur, pour les pulsation et nombre d’onde absolus.

3.3. Calculs de stabilité

3.3.1. Présentation du code de calcul de stabilité

Le code de calcul de stabilité utilisé à l’ONERA permet d’effectuer des calculs de stabilité
temporelle ou spatiale pour des valeurs complexes quelconques du nombre d’onde ou de la
pulsation, à l’aide de la méthode de collocation spectrale exposée précédemment. À l’origine,
il est dédié à l’étude de stabilité des jets ou des couches de mélange (cf. J.-Ph. Brazier [38]).
Pour mener à bien notre étude, il a été étendu pour traiter des sillages quelconques. Le code est
divisé en deux programmes : l’un permet de calculer des spectres complets et l’autre de suivre
la trajectoire d’un mode choisi
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– soit dans le plan (αr, αi) en faisant varier ωr à ωi constant ou ωi à ωr constant (stabilité
spatiale),

– soit dans le plan (ωr, ωi) en faisant varier αr à αi constant (stabilité temporelle).

Grâce à ce code, on est donc en mesure d’appliquer le critère d’instabilité absolue exposé
plus haut. Dans un premier temps, on calculera grâce au premier programme les modes spatiaux
de chaque profil pour une valeur de ω fixée, et avec le deuxième programme, on recherchera les
instabilités absolues sur un mode amplifié donné.

Comme on l’a vu, les points de collocation sont répartis de façon non homogène sur l’in-
tervalle d’étude : très resserrés aux bords et plus espacés au centre. Or il faut suffisamment de
points autour du bord de fuite pour bien décrire la zone de recirculation. Pour contourner ce
problème, le code de calcul permet de scinder le domaine en plusieurs sous-domaines (jusqu’à
trois) afin de resserrer les points au niveau des interfaces entre les sous-domaines.

3.3.2. Calcul des modes spatiaux

Démarche

Pour chaque profil, on calcule le spectre spatial pour ω réel fixé à 0,15. Cette valeur de 0,15
à été choisie grâce aux ordres de grandeurs trouvés dans la littérature. Elle sera justifiée rigou-
reusement a posteriori. Dans le plan (αr, αi) apparaîtront une multitude de points. La plupart
sont des artefacts de la méthode numérique, certains sont des modes artificiels créés par les
conditions aux limites. Ces modes “numériques” ne sont pas invariants lorsqu’on modifie le
nombre de points de maillage ou la position de la frontière extérieure du domaine. Ici on s’inté-
ressera uniquement aux modes “physiques” invariants par une modification du maillage et des
conditions aux limites. En général, on obtient de deux à quatre modes “physiques”. Pour plus
de détail, se référer à l’annexe B. Parmi ces modes, on va s’intéresser uniquement aux modes
amplifiés mis en évidence en appliquant le critère de Bers.

Validation de la méthode d’interpolation

Le domaine est divisé en trois sous-domaines : [−52,−1], [−1, 1] et [1, 10]. On utilisera 100
points sur le premier domaine, 90 sur le deuxième et 60 sur le dernier. La vérification de la
convergence en maillage et la procédure d’élimination des modes “numériques” sont détaillées
en annexe B. Sur la figure 3.5, on peut voir le résultat de la méthode d’interpolation par une
spline sur le profil “Complet x1”. On y présente la comparaison entre les profils après extrac-
tion (indexés “s” pour “source”) et après interpolation (indexés “f” pour “fitted”), ainsi que les
dérivées première et seconde de la vitesse.

On constate une très bonne adéquation entre le profil extrait et le profil interpolé. De plus,
les dérivées première et seconde de la vitesse sont bien régulières, sans introduction de racines
superflues pour la dérivée seconde. Ces constats sont aussi valables pour les deux autres profils,
ce qui valide notre méthode d’interpolation.
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Fig. 3.5 – Résultat de l’interpolation pour le profil “Complet x1”

Modes spatiaux
Les spectres spatiaux des trois profils sont visibles sur la figure 3.6. Les modes spatiaux sont

présentés pour trois ensembles de nombres de points de maillage : (100,90,60), (120,110,80) et
(140,130,100). On voit apparaître 4 modes invariants pour le premier profil et deux pour les deux
autres, répartis de manière symétrique par rapport à l’axe réel. Cette symétrie est caractéristique
d’un fluide non visqueux excité à une pulsation réelle, comme c’est le cas ici. Les coordonnées
des modes sont récapitulées dans le tableau 3.2.

L’application du critère de Bers montre que les modes situés dans le demi-plan de partie
imaginaire positive sont amortis, alors que les modes ayant une partie imaginaire négative sont
amplifiés. Les modes hydrodynamiques amplifiés se propagent vers les ξ positifs, c’est à dire
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vers l’aval de l’écoulement, ce qui correspond bien à ce que nous attendons puisque les tour-
billons qui sont créés derrière le bord de fuite se propagent vers l’aval.

(a) Profil “Complet x1” (b) Profil “Complet x2”

(c) Profil “Complet x3”

Fig. 3.6 – Spectres spatiaux pour les profils “Complets”

À la fréquence considérée, le profil “Complet x1” présente deux modes amplifiés, tandis que
les profils “Complet x2” et “Complet x3” n’en présentent qu’un seul. Pour le premier profil, on
n’étudiera que le mode le plus amplifié, c’est à dire le mode ayant la partie imaginaire la plus
négative.
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Profil

Indice
αr

αi

Complet x1

258 259 274 275
1,573 1,573 1,765 1,765
-0,302 0,302 -0,436 0,436

Complet x2

287 288
1,794 1,794
-0,297 0,297

Complet x3

267 268
1,599 1,599
-0.420 0.420

Tableau 3.2 – Coordonnées des modes spatiaux pour les profils “Complets”

3.3.3. Vecteurs propres

Les vecteurs propres associés aux modes amplifiés ont été calculés. Comme tout vecteur
propre, ils sont définis à une constante multiplicative près. Ici on a choisi de les normaliser en
fixant la valeur maximale de la pression à 1.

On voit sur les figures 3.7, 3.8, 3.9 et 3.10 l’allure des vitesses longitudinale et transversale
et de la pression. Même si le profil de base n’est pas symétrique, on voit que la vitesse trans-
versale semble se rapprocher d’une symétrie pour tous les modes, mis à part le mode le moins
amplifié du premier profil. La pression et la vitesse longitudinale quant à elles sont plutôt antisy-
métriques. Ceci est caractéristique des modes dits “sinueux” (Huerre & Rossi [31]). Le second
mode du premier profil semble plutôt être un mode antisymétrique ou de type “variqueux”.
Dans le cas d’un sillage symétrique, la théorie de la stabilité linéaire prévoit que le mode le plus
amplifié est justement le mode sinueux. Les résultats présentés ici semblent montrer que les
modes les plus amplifiés dans le cas d’un sillage non symétrique sont aussi les modes sinueux.

Grâce à une étude de stabilité spatiale, au critère de Bers et à une étude rapide des vecteurs
propres, les modes amplifiés sinueux ont été identifiés ; on va pouvoir maintenant leur appliquer
le critère d’instabilité absolue.
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Fig. 3.9 – Vecteurs propres pour le profil “Complet x2”
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Fig. 3.10 – Vecteurs propres pour le profil “Complet x3”
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3.3.4. Recherche des instabilités absolues

Principe

Pour effectuer la recherche des instabilités absolues avec le code de calcul de stabilité, on
trace les courbes ωr → αi(ωr, ωi), ωr → αr(ωr, ωi), αr → αi(ωr, ωi), en faisant varier ωi de 0
jusqu’à trouver un éventuel point de rebroussement. S’il existe un point de rebroussement sur
les courbes ωr → αi(ωr, ωi) et ωr → αr(ωr, ωi), accompagné d’une permutation des branches
spatiales dans le plan (αr, αi), c’est que nous sommes en présence d’une instabilité absolue.

La valeur de ωr en ce point donne la fréquence absolue adimensionnée. Il est possible de
revenir à la fréquence réelle par la relation

f0 =
ωrUr

2πlr
,

où Ur et lr sont la vitesse et la longueur de référence ayant servi pour l’adimensionnalisation.
Donc, dans notre cas,

f0 =
ωrc

πd
. (3.1)

Application

Sur les figures 3.11, 3.12 et 3.13, on peut voir les trois diagrammes de stabilité évoqués ci-
dessus pour les trois profils étudiés. Seuls les deux premiers profils, qui sont dans la zone de
recirculation, présentent une instabilité absolue. Les valeurs du nombre d’onde α0, de la pulsa-
tion ω0 et de la fréquence réelle f0 absolus sont résumées dans le tableau 3.3. Le dernier profil,
qui n’est pas dans la zone de recirculation, ne présente pas d’instabilités absolues.

Profil Complet x1 Complet x2

ω0 0,1175 + 0,023i 0,1212 + 0,013i
α0 1,082 - 0,705i 1,0797 - 0,796i

f0(Hz) 38974 40217

Tableau 3.3 – Instabilités absolues pour les profils “Complets”

Comme on l’attendait, il y a coïncidence entre la zone de recirculation et la zone d’instabilité
absolue. Toutefois, le nombre insuffisant de profils extraits, dû à la taille grossière des mailles,
ne permet pas de situer avec précision la poche d’instabilité absolue. Quoiqu’il en soit, l’étude
présente permet de confirmer l’existence de cette poche dans le sillage du bord de fuite.
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Fig. 3.11 – Diagrammes de stabilité pour le profil “Complet x1”

Remarques

Lors du calcul du spectre complet sur le premier profil “Complet x1”, nous avons mis en évi-
dence l’existence de deux modes amplifiés grâce au critère de Bers : un mode pseudo-sinueux et
un mode pseudo-variqueux. Nous avons choisi d’étudier uniquement le mode pseudo-sinueux,
le plus amplifié. Le mode variqueux mérite notre attention car une étude de stabilité révèle un
comportement étrange comme on peut le voir sur la figure 3.14. Sur le diagramme (ωr,αr), le
comportement semble normal avec une bifurcation de type Hopf.

Pourtant, si l’on continue l’étude dans le plan (ωr,αi), on ne voit pas apparaître de bifurcation,
tout juste une “bosse”. Le diagramme (αr,αi) contient un comportement encore plus étrange
avec l’apparition de boucles dans le voisinage du point (αr,αi)=(1,67 ; -0,1). Ce comportement
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Fig. 3.12 – Diagrammes de stabilité pour le profil “Complet x2”

n’est pas décrit dans la théorie de la stabilité linéaire exposée. De plus, dans le diagramme
(ωr, αr), certaines courbes possèdent un point en lequel la dérivée est nulle :

∂αr

∂ωr
= 0.

Ceci correspond à une vitesse de groupe

vg =
∂ωr

∂αr

infinie.
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Fig. 3.13 – Diagrammes de stabilité pour le profil “Complet x3”

À l’heure actuelle, nous ne sommes pas en mesure d’interpréter ce résultat. Une solution
pourrait peut-être être trouvée par une étude de stabilité non-linéaire. Mais ceci dépasse large-
ment le cadre de ce rapport.
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Fig. 3.14 – Diagrammes de stabilité du second mode amplifié pour le profil “Complet x 1”
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3.3.5. Influence des conditions aux limites

Jusqu’à maintenant, nous n’avons pas parlé de l’influence des conditions aux limites sur la
génération des tourbillons dans le sillage du bord de fuite. La présence de la paroi dans la zone
inférieure du sillage peut avoir une incidence sur la fréquence du lâcher de tourbillons.

On va étudier cette influence en tronquant le premier profil en un domaine symétrique centré
en 0 et de 10 épaisseurs de bec de largeur. La condition limite choisie dans le domaine inférieur,
soit pour η = −10, sera analogue à celle du domaine supérieur, soit un raccord à une expo-
nentielle décroissante. On effectue les calculs de stabilité sur ce profil en divisant le domaine
[-10,10] en trois sous-domaines : [-10,-1], [-1,1] et [1,10] avec 60 points sur les sous-domaines
extrêmes ([-10,-1] et [1,10]) et 90 sur le sous-domaine central [-1,1]. Le nouveau profil sera
nommé “Tronqué x1”.

Pour le calcul de stabilité, on applique strictement la même démarche que précédemment.
Le spectre spatial est exactement le même que pour le profil “Complet x1”. On retrouve bien les
4 modes répartis de manière symétrique de part et d’autre de l’axe αr, leurs coordonnées sont
identiques et ce sont les mêmes qui sont amplifiés. La recherche d’instabilités absolues conduit
aux mêmes résultats que pour le profil “Complet x1”, comme on peut le voir sur la figure 3.15.

Cette étude, ajoutée aux résultats de l’annexe B, permet de mettre en évidence deux choses.
Premièrement, une fois la convergence en maillage atteinte, on a pu voir que l’extension du
domaine n’avait pas d’influence. Ceci s’explique aisément quand on regarde l’allure des modes
propres aux frontières du domaine (fig. 3.7 par exemple). On voit qu’ils sont clairement amortis
bien avant les frontières du domaine. Donc, la taille du domaine de calcul n’a pas d’influence
sur les résultats, tant que ses bornes sont dans une zone où les modes propres sont amortis. Par
conséquent, la condition imposée à la limite inférieure, que ce soit une condition de paroi ou de
raccord à la solution en milieu homogène, n’a plus aucune incidence sur la fréquence absolue
locale.

On pourra donc effectuer les éventuels calculs ultérieurs sur des profils tronqués. Cela nous
permettra de réduire le temps de calcul puisque le nombre de points de collocation utilisé sera
inférieur.

3.4. Commentaires

3.4.1. Critère pour la détermination du mode global

Nos calculs de stabilité nous ont permis de déterminer les valeurs des pulsations et nombres
d’ondes absolus locaux en trois stations du sillage. Cependant les critères exposés dans la par-
tie précédente montrent la nécessité d’une grande résolution spatiale pour la détermination du
mode global. Etant donné la taille importante des mailles derrière le bord de fuite, ces critères
sont clairement inapplicables. On devra se contenter d’une valeur approchée en admettant que
la fréquence d’un mode global est proche des valeurs trouvées localement. Pour fixer un ordre
de grandeur, on retiendra une valeur de 40 kHz.
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Fig. 3.15 – Influence de la condition à la limite inférieure

3.4.2. Comparaison avec la littérature

Suivant les conditions expérimentales (angle d’incidence, angle de déflexion, épaisseur du
bord de fuite du bec, etc...) les valeurs sont dans une plage de fréquence située entre 40 et 50
kHz. Les valeurs numériques calculées par Agarwal [5] vont de 36 kHz à 20° de déflexion
jusqu’à 46 kHz à 30° de déflexion. Donc la valeur retenue de 40 kHz est en très bon accord avec
les valeurs présentes dans la littérature, malgré les imprécisions introduites et notre incapacité
à déterminer avec exactitude la fréquence du mode global.
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4. CONCLUSIONS ET PERSPECTIVES

Bilan de l’étude
Le contexte aéronautique actuel et l’essor que subit le trafic aéroportuaire imposent de ré-

duire le bruit émis par les aéronefs. Dans cette optique, on a vu que de nombreuses études
avaient été effectuées ou étaient toujours en cours pour comprendre les mécanismes générateurs
de bruit, en particulier le bruit d’origine aérodynamique. Ces études révèlent la prédominance
du bruit de bec lors des phases d’approche.

Des deux caractéristiques principales de l’écoulement autour du bec, tourbillon intra-cavitaire
et lâcher de tourbillons périodique dans le sillage du bord de fuite du bec, l’étude présente s’est
intéressée uniquement au sillage du bord de fuite. Plus précisément, l’objectif de l’étude était de
prévoir un ordre de grandeur pour la valeur de la fréquence de lâcher de tourbillons, en utilisant
les outils de la stabilité linéaire.

Cet objectif a été pleinement rempli grâce aux outils de calcul de stabilité développés à
l’ONERA. Le code de calcul a été étendu pour traiter le cas d’un sillage non symétrique quel-
conque en implémentant une méthode d’interpolation par des splines. Ensuite, on a appliqué
le critère d’instabilité absolue sur trois profils de vitesse extraits d’un calcul RANS en trois
stations en aval de l’écoulement dans le sillage du bec.

L’étude de stabilité sur ces trois profils a permis de mettre en évidence l’existence d’une
poche d’instabilité absolue dans le sillage et de déterminer deux valeurs de fréquence absolue
locale. Malgré des difficultés pour déterminer la valeur de la fréquence d’oscillation du mode
global, la valeur retenue de 40 kHz est en très bon accord avec les mesures et les calculs pré-
existants.

Perspectives
Le principal écueil de cette étude est l’impossibilité d’appliquer un critère pour la détermina-

tion de la fréquence du mode global. Il aurait fallu avoir une plus grande résolution spatiale du
maillage dans le sillage proche du bec. Une dizaine de points au moins serait nécessaire, donc
il faudrait par exemple diviser chacune des quatre mailles derrière le bec en trois. Cependant,
les calculs RANS utilisés ici ont été effectués dans le voisinage de l’aile entière, et diviser ces
mailles en trois serait trop coûteux en temps de calcul. Il faudrait donc envisager d’effectuer un
nouveau maillage raffiné dans le sillage du bec, et de refaire un calcul CFD uniquement dans le
voisinage du bec.

Nous nous sommes ici intéressé uniquement au bord de fuite du bec. Mais comme on l’a
évoqué en introduction, l’écoulement dans le bec est riche en phénomènes physiques. Il serait
intéressant d’effectuer une étude de stabilité sur le tourbillon central. La théorie de stabilité
exposée ici ne s’applique plus, car l’écoulement est bidimensionnel, et les conditions aux li-
mites sont bien plus complexes. De plus, la géométrie n’est pas cartésienne donc la méthode
de collocation spectrale utilisée ici est insuffisante. Il faudra donc développer un modèle adapté
à la géométrie curviligne de la cavité du bec. Une fois les modes propres de la cavité calcu-
lés, on pourra peut-être mettre en évidence un couplage générateur de bruit entre le lâcher de
tourbillons et le tourbillon intra-cavitaire.
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5. ANNEXE A - EXPRESSION DES MATRICES DU PROBLÈME AUX VALEURS
PROPRES

On part du système (2.17) dans lequel on effectue un changement de variable homothétique
pour se ramener à l’intervalle [-1,1]. Soit σ la nouvelle variable et S1 = ∂yσ. Alors le système
se réécrit sous la forme :

⎧⎪⎨
⎪⎩

ρ0 c2
0 S1 ∂σG + iαρ0 c2

0 F + i(αU0 − ω)P = 0

i(αU0 − ω)F + ∂yU0 G − iαρ−1
0 P = 0

ρ−1
0 S1 ∂σP + i(αU0 − ω)G = 0

(5.1)

Soit :

X =

⎛
⎝ F

G
P

⎞
⎠

D’après la relation de dérivation (2.20), on a

X ′ ≡ dX

dσ
= AX.

Stabilité spatiale

Dans le cas d’une étude spatiale, on fixe ω et la valeur propre recherchée est α. Donc on
réécrit le système (5.1) sous la forme :

Ms
1X ′ + Ms

2X = αQs.

Les matrices M s
1 , Ms

2 et Qs sont le résultat de l’assemblage des matrices élémentaires 3x3
Ms

1,e, Ms
2,e et Qs

e, avec :

Ms
1,e =

⎛
⎝ 0 ρ0c

2
0 S1 0

0 0 0
0 0 ρ−1

0 S1

⎞
⎠ , Ms

2,e =

⎛
⎝ 0 0 −iω

−iω ∂yU0 0
0 −iω 0

⎞
⎠ ,

Qs
e =

⎛
⎝ 0 0 −iω

−iω ∂yU0 0
0 −iω 0

⎞
⎠

Donc :

Ds = Ms
1A + Ms

2 , et Es = Qs.
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Stabilité temporelle

Dans le cas d’une étude spatiale, on fixe ω et la valeur propre recherchée est α. Donc on
réécrit le système (5.1) sous la forme :

M t
1X

′ + M t
2X = ωQt.

Les matrices M t
1, M t

2 et Qt sont le résultat de l’assemblage des matrices élémentaires 3x3
M t

1,e, M t
2,e et Qt

e, avec :

M t
1,e =

⎛
⎝ 0 ρ0c

2
0 S1 0

0 0 0
0 0 ρ−1

0 S1

⎞
⎠ , M t

2,e =

⎛
⎝ 0 ρ0c

2
0 S1 0

0 0 0
0 0 ρ−1

0 S1

⎞
⎠ ,

Qt
e =

⎛
⎝ 0 0 −i

−i 0 0
0 −i 0

⎞
⎠

Donc :

Dt = M t
1A + M t

2, et Et = Qt.
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6. ANNEXE B - ÉTUDE DE CONVERGENCE NUMÉRIQUE

La méthode de collocation est sensible au nombre de points utilisés pour le maillage. Nous
avons vu que le calcul du spectre spatial par cette méthode créait des “modes numériques” non
pertinents pour notre étude. On peut repérer ces modes en effectuant des calculs pour différentes
“configurations numériques”.

Pour chaque profil, on a fait varier le nombre de points par domaines, la taille du domaine,
ainsi que le type de condition imposée sur le bord inférieur du domaine. Soit N1, N2 et N3 les
nombres de points de collocation pour les sous-domaines inférieur, central et supérieur. Soit I
l’intervalle d’étude et C.L. les conditions aux limites.

Le tableau 6.1 résume les configurations utilisées pour chaque profil.

Profil N1 N2 N3 I C.L.

Complet x1 100 90 60 [-52,10] glissement
120 110 80 [-52,10] glissement
140 130 100 [-52,10] glissement
80 70 40 [-52,10] glissement

100 90 60 [-52,10] exponentielle
100 90 60 [-40,10] exponentielle
60 90 60 [-10,10] exponentielle

Complet x2 100 90 60 [-52,10] glissement
et 120 110 80 [-52,10] glissement

Complet x3 140 130 100 [-52,10] glissement
100 90 60 [-40,10] exponentielle
100 90 60 [-40,5] exponentielle
60 90 60 [-10,10] exponentielle

Tableau 6.1 – Configurations numériques pour l’étude de convergence

A partir de (N1, N2, N3) = (100, 90, 60), on arrive à convergence des modes hydrodyna-
miques étudiés : en augmentant le nombre de points, les quatre modes du premier profil et les
deux modes des profils “Complet x2” et “Complet x3” ne bougent plus. Ceci justifie notre choix
de la configuration (N1, N2, N3) = (100, 90, 60) dans notre étude.

D’autre part, le choix des configurations numériques tests permet de renforcer le constat ef-
fectué concernant l’influence des conditions aux limites. Une fois la convergence en nombre de
points atteinte, la taille du domaine ou le type de condition à la limite inférieure n’ont quasiment
aucune influence. On retrouve les mêmes modes spatiaux.
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7. ANNEXE C - RÉCAPITULATIF DES EXPÉRIMENTATIONS ET CALCULS
AUTOUR DU BEC

Cette partie effectue un récapitulatif des expérimentations et calculs qui ont été effectués au-
tout du bec. Ce récapitulatif n’est sûrement pas exhaustif, mais il donne un aperçu assez vaste
des travaux qui ont été effectués depuis 1998.

Significations des colonnes :

– Profil : référence ou type du profil utilisé pour effectuer les calculs ou les expériences,
– XP : outils ou méthodes de mesure utilisés,
– Num. : méthode numérique utilisée pour les calculs,
– U/M : vitesse amont ou nombre de Mach de l’écoulement,
– Re : nombre de Reynolds de l’écoulement,
– Corde (profil/bec) : corde du profil et corde du bec,
– Δ : angle d’incidence,
– δs : angle de déflexion,
– échelle : facteur d’échelle de la maquette ou du modèle,
– d : épaisseur du bord de fuite du bec.

Nomenclature :

– HLD : High Lift Devices,
– PIV : Particle Image Velocimetry,
– HWA : Hot Wire Anemometry,
– Capt. P. : Capteurs Piezzoélectriques,
– Ac. Mirror : Acoustic Mirror
– RANS : Reynolds Averaged Navier Stokes,
– URANS : Unstationnary Reynolds Averaged Navier Stokes,
– FW-H : Équations de Ffowcs-Williams & Hawkings,
– BEM : Boundary Element Method,
– NLDE : Non Linear Disturbed Equations.
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