
EQUATIONS THERMOELECTRIQUES 

Le but de ce problème vise à établir les relations liées entre les paramètres électriques et thermiques d’un module 

à effet Seebeck. On rappellera brièvement que l’effet Seebeck permet la production d’électricité et de froid à partir 

d’une source de chaleur. La partie thermique étudiée ne concerne qu’un couple PN. Il est donc constitué de deux 

matériaux dopés P et N ainsi que du conducteur électrique présent de chaque coté de celui-ci.  Pour prendre en compte 

l’intégralité du module, il faudra rajouter au modèle établi les résistances thermiques dues à la couche de céramique 

présente de part et d’autre de la cellule ainsi que des résistances de contact. 

 

Schématisation d’une jonction PN 

 

Le module Seebeck étant assez mince, on ne tiendra pas compte des effets de convection et de rayonnement à l’intérieur 

du module. De même d’un point de vue électrique les effets Thomson seront ignorés. Dans les deux branches le flux 

transporté s’écrit : 

 

�� = �� × � × � − λ� × 	� × 
�

�

�
 = −�
 × � × � − λ
 × 	
 × 
�

�

 (1) 

 

Avec  ��  et �
  les pouvoirs thermoélectriques absolues des matériaux P et N considérés positifs en  ��
��, 

          λ�  et  λ
  les conductivités thermiques des matériaux P et N en  � �
�.��, 

          	�  et  	
  les sections des branches des matériaux P et N en  � ���, 
          �  le courant continu traversant les branches en [A] et T la température en un point du module en [K], 

 

L’équation de la chaleur s’écrit de manière générale si l’on ne considère que la conduction : 
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#�    la génération de chaleur par unité de volume en  � �
�$�. 

             ρ la résistivité électrique du matériau [Ω.m]. 

 

Comme le régime est considéré stationnaire, on a pour chaque branche : 
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Si l’on résout l’équation issue de (2) pour la branche p : 
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Conditions aux limites : �+) = 0, =  �/  et  �+) = 0, =  �1  soit, 

• en  ) = 0  on a :  - = λ� × 	� × �/ 
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Si l’on remplace dans (3) et que l’on suit le même raisonnement pour le côté dopé N, on obtient: 
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En combinant (1) et (4) : 
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Si on somme  ��+) = 0,  et  �
+) = 0,  on obtient la puissance chaude d’entrée du système : �5 . De même si 

l’on somme ��+) = 0�,  et  �
+) = 0
,  on obtient la puissance froide à la sortie du système  �3. En admettant que les 

sections de passage des branches (	
 et  	�) soient identiques et en considérant les longueurs de jambes égales (0
 =
 0�)  on peut écrire : 
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  la résistance électrique d’une paire de branches PN. 
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  le coefficient d’échange thermique global d’une paire de branches PN. 

       � = +�� − �
,  le pouvoir thermoélectrique du couple PN (encore appelé coefficient Seebeck). 

 

 

Equation bizarre car on part de 
l’équation de la chaleur (le seul flux est la 
conduction thermique) et d’autres flux 
viennent s’y ajouter de part la considération 
en (1) 


