I have for long thought that if I had the opportunity to teach this
subject, I would emphasize the continuity with earlier ideas. Usually it is
the discontinuity which is stressed, the radical break with more primitive
notions of space and time. Often the result is to destroy completely the
confidence of the student in perfectly sound and useful concepts already
acquired®.

If you doubt this, then you might try the experiment of confronting
your students with the following situation?. Three small spaceships, A, B,
and C, drift freely in a region of space remote from other matter, without
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rotation and without relative motion, with B and C equidistant from A
(Fig. 1).

On reception of a signal from A the motors of B and C are ignited
and they accelerate gently?® (Fig. 2).

Let ships B and C be identical, and have identical acceleration
programmes. Then (as reckoned by an observer in A) they will have at
every moment the same velocity, and so remain displaced one from the
other by a fixed distance. Suppose that a fragile thread is tied initially
between projections from B and C (Fig. 3). If it is just long enough to

tha ad Aie "ne 1 1
span tnc lc\iuut;u distance initially Y, then as the rockets Syu“d up, it will

become too short, because of its need to Fitzgerald contract, and must
finally break. It must break when, at a sufficiently high velocity, the
artificial prevention of the natural contraction imposes intolerable stress.
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Is it really so? This old problem came up for discussion once in the
CERN canteen. A distinguished experimental physicist refused to accept
that the thread would break, and regarded my assertion, that indeed it
would, as a personal misinterpretation of special relativity. We decided
to appeal to the CERN Theory Division for arbitration, and made a (not
very systematic) canvas of opinion in it. There emerged a clear consensus
that the thread would not break!

Of course many people who give this wrong answer at first get the right
answer on further reflection. Usually they feel obliged to work out how
things look to observers B or C. They find that B, for example, sees C
drifting further and further behind, so that a given piece of thread can no
longer span the distance. It is only after working this out, and perhaps
only with a residual feeling of unease, that such people finally accept a
conclusion which is perfectly trivial in terms of A’s account of things,
including the Fitzgerald contraction. It is my impression that those with
a more classical education, knowing something of the reasoning of Larmor,
Lorentz, and Poincaré, as well as that of Einstein, have stronger and
sounder instincts. I will try to sketch here a simplified version of the
Larmor—Lorentz—Poincaré approach that some students might find
helpful.

Some familiarity with Maxwell’s equations is assumed, so that the
calculation of the field of a moving point charge can be followed, or at
least the result accepted without mystification. For a charge Ze moving
with constant velocity V along the z axis the nonvanishing field compo-

nents arc: W
E,=Zez(x*+y*+ 2?72
E, = Zex(x? + y* + 272 (1 - V2/c?) ™1

E,= Zey(x? + ¥+ 27321 — Vz/cz)— 12 % (1)
B.= —(V/c)E,
B = +(V/c)E
y 1Y 1=x
Fig. 2. Fig. 3.
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where
(2)
and z,(z) is the position of the charge at time t. For a charge at rest, V =0,
this is just the familiar Coulomb field, spherically symmetrical about the
source. But when the source moves very quickly, so that ¥?/c? is not very
small, the field is no longer spherically symmetrical. The magnetic field 1s
transverse to the direction of motion and, roughly speaking, the system
of lines of electric field is flattened in the direction of motion (Fig. 4).

In so far as microscopic electrical forces are important in the structure of
matter, this systematic distortion of the field of fast particles will alter the
internal equilibrium of fast moving material. It is to be expected therefore
that a body set in rapid motion will change shape. Such a change of shape,
the Fitzgerald contraction, was in fact postulated on empirical grounds
by G.F. Fitzgerald in 1889 to explain the results of certain optical
experiments.

Fig. 4.

X-Xy

Z-Zy

. , - \ |/
- AN - - /\ -
electric field of and of source moving
source at rest in z direction

Fig. 5.
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The simplest piece of matter that we can discuss in this connection is
a single atom. In the classical model of such an atom a number of electrons
orbit around a nucleus. For simplicity take only one electron, and ignore
the effect, on the relatively masssive nucleus, of the field of the electron.
The dynamical problem is then that of the motion of the electron in the
Gield of the nucleus. Let us start with the nucleus at rest and the electron,
for simplicity, describing a circular orbit (Fig. 5).

What happens to this orbit when the nucleus is set in motion?*

If the acceleration of the nucleus is quite gentle, its field differs only
slightly from (1). Moreover, the accurate expression is known®.

In this field we have to solve the equation of motion for the electrons

dp

= —eE+c 't xB) (3)

where r, is the electron position and the fields in (3) are evaluated at that
position. At low velocity, momentum and velocity are related by

f.=p/m ' 4

But this familiar formula proves inadequate for high velocities. It would
imply that by acting for long enough with a given electric field an electron
could be taken to arbitrarily high velocity. But experimentally it is found
that the velocity of light is a limiting value. The experimental facts are
fitted by a modified formula proposed by Lorentz

t =p//m* +pic”’ (%)
This is what we take together with (3).
One can programme a computer to integrate these equations. Let the
computer print out as a function of time the displacement

re(t) - rN(t)

of the electron from the nucleus. Suppose the nucleus to move along the
z axis, and the electron to orbit in the xz plane. Then if the acceleration
of the nucleus is sufficiently gradual®, the initially circular orbit deforms
slowly into an ellipse, as in Fig. 6.

That is to say that the orbit retains its original extension in the direction
transverse to the motion of the system as a whole, but contracts in the
direction along that motion. The contraction is to a fraction

J1—=V?/c? (6)

of the original — the Fitzgerald contraction — where V is the velocity of
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Fig. 6
X,—Xy
l Ze -'ZN
I
orbit in atom and of source moving
at rest in z direction

the nucleus during the orbit in question. Moreover, this is performed in
a period exceeding the original period by a factor

1//1-V?c* (7)

— the time-dilation of J. Larmor (1900).
If the period of the system at rest is T, then the total number of
revolutions during a journey of time ¢ with proton velocity V(¢) is

1
o1 f dr,/1 - ™2V (z)? ®)

Jo
_ which is less than that for a similar system at rest, even if the moving
system is both initially and finally also at rest and initially and finally in
the same position. This straightforward result of computation is the origin
of the ‘paradox’ of the travelling twin (Le Voyageur de Langevin, en

frangazis).
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S Su g"e ts that it may be useful to describe the moving
system in terms of new variables which incorporate the Fitzgerald and

Larmor effects:

=(z — zy(®)/ /1 — 2V (1)’
X=x V=Y ©)

t

The motivation for the last term in the definition of ¢ is not obvious, but
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emerges from more detailed examination of the orbit. Including this term,
the orbit

Z) , Xdt) (10)

is not merely circular, with period T, but is swept out with constant
angular velocity. That is, the description of the orbit of the moving atom in
terms of the primed variables is identical with the description of the orbit of the
stationary atom in terms of the original variables.

As regards the electromagnetic field we have already profited from the
use of the variable z' in writing (1). Going further in this direction, one
can introduce

E. =(E,—c 'VB)JT—c 2V
E,=(E,+c VB J1—c V?
E.=E,

B,=(B,+c 'VE)./1—c V2
B,=(B,— ¢ 'VE)J/1—c*V?

B.=B,

( (11)

Then it is easy to check that the expression of the field of the uniformly
moving charge in terms of the primed pariables is identical with the expression
of the field of the stationary charge in terms of the original variables.

We have been speaking of a gently accelerated atom. So the velocity V
always remains essentially constant during many revolutions of the
electron. During any such interval, one can arrange that

jtdt 1—c VP =t /l—c2V? (12)

0

zy(t)y=Vt (13)
by a suitable choice of the origin of z and t. Then (9) can be rewritten
'= (= V)1V )
x'=x
, >
y=y

v =(t — Vx/c?)/J1—V?/c* )

This is then the standard form of what is called a Lorentz transformation.
That the use of such variables enables the moving atom to be described
by the functions appropriate to the stationary atom is an illustration of

(14)
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108 _ 03z 90y e (15)
C

and the Lorentz equations

3—‘:=—e(E+c—1rexB)’

? (16)

d
£= p//m? + ¢ *p?

are expressed in terms of the new variables (1) and (14) they have exactly
the same form as before

’ 1 1}

10E, 0B, 0B,

- = , etc.
car oy e
d r
= —eE +c T xB) | (17)

dr, 5
5 —P/m e

(where the last equation can be taken as defining p). The equations are
said to be Lorentz invariant. From any solution of the original equations,
involving certain mathematical functions (e.g., the Coulomb field and the
circular orbit in the stationary atom), one can construct a new solution
by putting primes on all the variables and then eliminating these primes
by means of (11) and (14) (giving, e.g, the flattened field and ellipitcal
orbit of the moving atom). Moreover, by a trivial extension this reasoning
applies not only to a single electron interacting with a single electro-
magnetic field, but to any number of charged particles, each interacting
with the fields of all others. This allows an extension to very complicated
systems of some of the results described above for the simple atom. Given
any state of the complicated system, there is a corresponding ‘primed’ state
which is in overall motion with respect to the original, shows the Fitzgerald
contraction, and the Larmor dilation. Suppose, for example, in the original
state all particles are permanently inside a region bounded by

z=+L/2
then the corresponding primed state has boundaries

Z=4+L/2
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or from (14)
z=Vt + 1/2L,/L—V?/c?
i.e., they move with the velocity ¥ and are closer together by the Fitzgerald
factor.
Suppose next that in the original state something happens (e.g., an
electron passes) at a place x = x,,y = y,,z =z, at time t,, and again at the

same place at time t,. Then the corresponding events in the primed state
occur at

r

X'=x, Y=y, =z =1l
or (solving (14)) at
X=X3 Yy=h

~ A I/+
] v 1 21+V-t2

Ll 13
z= ,
J1=V3c J1- V¥
t, 4+ Vz,fc? t,+ Ve, /c?
J1-V?¥e ,\/1 —V?/c?

The place of occurrence moves with velocity V, and the time interval
between the two events increases by the Larmor factor.

Can we conclude then that an arbitrary system, set in motion, will show
precisely the Fitzgerald and Larmor effects? Not quite. There are two

NrAYICAS he
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The first is this: the Maxwell-Lorentz theory provides a very inadequate
model of actual matter, in particular solid matter. It is not possible in a
classical model to reproduce the empirical stability of such matter.
Moreover, things are made worse when radiation reaction is included.
Moving charges in general radiate energy and momentum, and because
of this there are extra small terms in the equation of motion. Even in the
simple hydrogen atom the electron then spirals in towards the proton
instead of remaining in a stable orbit. These problems were among those
which led to the replacement of classical by quantum theory. Moreover,
even in the quantum theory electromagnetic interactions turn out to be
not the only ones. For example, atomic nuclei are apparently held together
by quite different ‘strong’ interactions. We do not need to get involved in
these details if we assume with Lorentz that the complete theory is Lorentz
invariant, in that the equations are unchanged by the change of variables
(14), supplemented by some generalization of (13) to cover all the quantities

F o—_—
L=
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in the theory. Then for any state there is again a corresponding primed

showing the Fitzeerald and Larmor effects
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The second proviso is this. Lorentz invariance alone shows that for any
state of a system at rest there is a corresponding ‘primed’ state of that system
in motion. But it does not tell us that if the system is set anyhow in motion, it
will actually go into the ‘prime’ of the original state, rather than into the
‘prime’ of some other state of the system at rest. In fact, it will generally do
the latter. A system set brutally in motion may be bruised, or broken, or
heated, or burned. For the simple classical atom similar things could have
happened if the nucleus, instead of being moved smoothly, had been jerked.
The electron could be left behind completely. Moreover, a given acceler-
ation is or is not sufficiently gentle depending on the orbit in question. An
electron in a small, high frequency, tightly bound orbit, can follow closely a
nucleus that an electron in a more remote orbit — or in another atom —
would not follow at all. Thus we can only assume the Fitzgerald
contraction, etc., for a coherent dynamical system whose configuration is
determined essentially by internal forces and only little perturbed by gentle
external forces accelerating the system as a whole. Let us do so.

Then, for example, in the rocket problem of the introduction, the material
of the rockets, and of the thread, will Lorentz contract. A sufficiently strong
thread would pull the rockets together and impose Fitzgerald contraction
on the combined system. But if the rockets are too massive to be
appreciably accelerated by the fragile thread, the latter has to break when
the velocity becomes sufficiently great.

So far we have discussed moving objects, but not yet moving subjects. The
question of moving observers is not entirely academic. Quite apart from
people in rockets, it seems reasonable to rcgard the earth itself, orbiting the
sun, as moving — at least for much of the year’. The important point to be
made about moving observers is this, given Lorentz invariance: the primed
variables, introduced above simply for mathematical convenience, are pre-
cisely those which would naturally be adopted by an observer moving with
constant velocity who imagines herself to be at rest. Moreover, such an
observer will find that the laws of physics in these terms are precisely those
that she learned when at rest (if she was taught correctly).

Such an observer will naturally take for the origin of space coordinates a
point at rest with respect to herself. This accounts for the ¥t term in the

relation
=@z—-Vt)/J1 - VZ/_c2

The factor /1 — V?/c? is accounted for by the Fitzgerald contraction of
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her metre sticks. But will she not see that her metre sticks are contracted
when laid out in the z direction — and even decontract when turned in the x

direction? No, because the retina of her eye will also be contracted, so that
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just the same cclls receive the image of the metre stick as if both stick and
observer were at rest. In the same way she will not notice that her clocks
have slowed down, because she will herself be thinking more slowly.
Moreover, imagining herself to be at rest, she will not know that light
overtakes her, or comes to meet her, with different relative velocities ¢ 1 v.
This will mislead her in synchronizing clocks at different places, so that she
is led to think that '

t— Vz/c?

J1=V?c?

is the real time, for with this choice light again seems to go with velocity cin
all directions. This can be checked directly, and is also a consequence of the
prime Maxwell equations. In measuring electric field she will use a test
charge at rest with respect to her equipment, and so measure actually a
combination of E and B. Defining both E and B by requiring what looks
like the familiar effects on moving charged particles, she will be led rather to
E’ and B'. Then she will be able to verify that all the laws of physics are as she
remembers, at the same time confirming her own good sense in the
definitions and procedures that she has adopted. If something does not
come out right, she will find that her apparatus isin error (perhaps damaged
during acceleration) and repair it.

Our moving observer O, imagining herself to be at rest, will im
it is the stationary observer O who moves. And it is as easy t
variables in terms of hers as vice versa

'

magine that

1
O €XPI1Css his

x=x y=y | [x=x y=y
, 2=t e 7+ vVt
vyl -vie
,_ t—=Vz/c? U+ vz
J1 =V L J1=V2c?

Only the sign of V changes. She will say that his metre sticks have
contracted, that his clocks run slow, and that he has not synchronized
properly clocks at different places. She will attribute his use of wrong
variables to these Fitzgerald—Larmor-Lorentz—Poincaré effects in his
equipment. Her view will be logically consistent and in perfect accord with
the observable facts. He will have no way of persuading her that she is
wrong.
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This completes the introduction to what has come to be called ‘the special
theory of relativity’. It arose from experimental failure to detect any change,
in the apparent laws of physics in terrestrial laboratories, with the slowly
changing orbital velocity of the earth. Of particular importance was the
Michelson-Morley experiment, which attempted to find some difference in
the apparent velocity of light in different directions.

We have followed here very much the approach of H. A. Lorentz.
Assuming physical laws in terms of certain variables (t, x, y, z), an
investigation is made of how things look to observers who, with their
equipment, in terms of these variables, move. It is found that if physical laws
are Lorentz invariant, such moving observers will be unable to detect their
motion. As a result it is not possible experimentally to determine which, if
either, of two uniformly moving systems, is really at rest, and which moving.
All this for uniform motion: accelerated observers are not considered in the
‘special’ theory.

The approach of Einstein differs from that of Lorentz in two major ways.
There is a difference of philosophy, and a difference of style.

The difference of philosophy is this. Since it is experimentally impossible
to say which of two uniformly moving systems 1s really at rest, Einstein
declares the notions ‘really resting’ and ‘really moving’ as meaningless. For
him only the relative motion of two or more uniformly moving objects is
real. Lorentz, on the other hand, preferred the view that there is indeed a
state of real rest, defined by the ‘aether’, even though the laws of physics
conspire to prevent us identifying it experimentally. The facts of physics do
not oblige us to accept one philosophy rather than the other. And we need
not accept Lorentz’s philosophy to accept a Lorentzian pedagogy. Its
special merit is to drive home the lesson that the laws of physics in any one
reference frame account for all physical phenomena, including the observ-
ations of moving observers. And it is often simpler to work in a single frame,
rather than to hurry after each moving object in turn.

The difference of style is that instead of inferring the experience of moving
observers from known and conjectured laws of physics, Einstein starts from
the hypothesis that the laws will look the same to all observers in uniform
motion. This permits a very concise and elegant formulation of the theory,
as often happens when one big assumption can be made to cover several less
big ones. There is no intention here to make any reservation whatever
about the power and precision of Einstein’s approach. But in my opinion
there is also something to be said for taking students along the road made
by Fitzgerald, Larmor, Lorentz and Poincaré®. The longer road sometimes
gives more familiarity with the country.

In connection with this paper I warmly acknowledge the counsels of
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M. Bell, F. Farley, S. Kolbig, H. Wind, A. Zichichi and H. Qveras. I thank
especially H. D. Deas for discussion of these ideas at an early stage.

Notes and references

1 Notes are to be ignored in a first reading.

2 E. Dewan & M. Beran, Am. J. Phys. 27, 517, 1959. A. A. Evett & R. K. Wangsness,
Am. J. Phys. 28, 566, 1960. E. M. Dewan, Am, J. Phys. 31, 383, 1963. A. A. Evett,
Am. J. Phys. 40, 1170, 1972,

3 Violent acceleration could break the thread just because of its own inertia while
velocities are still small. This is not the effect of interest here. With gentle
acceleration the breakage occurs when a certain velocity is reached, a function of
the degree to which the thread permits stretching beyond its natural length.

4 This method of acceleration, applying somehow a force to the nucleus without any
direct effect on the electron, is not very realistic. However, as explained later, it
follows from Lorentz invariance and stability considerations that any sufficiently
smooth acceleration process will produce the same Fitzgerald contraction and
Larmor dilation. The student is invited to attach a meaning {o this statement aiso
in the more general cases of non-circular orbits and when the acceleration is not in
the plane of the orbit.

5 For a source of charge Ze the fields are®, in c.g.s. units,

2
E=£{(t-—-rﬂ)(l—ﬂ)+((r—rﬂ) x-[A—})} (5.1)
s? c c? c c? ‘
B=rxE/r

where r=r,—[ry]

s=r—r-[v]/c
These are the fields at position r, at time t due to a source which at the retarded time

t—rfc (5.2)
had position, velocity, and acceleration

[r.]. [v],[A]

woivaF P

Because of the appearance of r in the retarded time (5.2), which is itself needed
to calculate r, these equations are less explicit than could be desired.
However, 1f one starts with a situation in which the source has been at

ctnnitn dictanca tn tha caneca ina
sgme tuuu, ris ..uuall" just the instantaneous distance to the source. One ca

7l KECp
track of it subsequently by integrating the differential equation
dr
—=s5"r(k, —[¥]) (5.3)

dt

which follows from

¥ =(r,— [ry])(rc — [14])

on differentiating with respect to time, noting that

d (l dr)
a["NJ =[v] ‘E
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In the particular case of uniform motion, A = 0, the retarded quantities can be
expressed in terms of unretarded ones:

[A]=A=0 \

[¥] = v = constant

[rp] =18 —vr/c > (5.4)

¢, — 1) + /(e Vol — 1)) + (1, — 1(1 — 07/
(1 — v*/c?) J

the last expression being the solution of

r=

=@, —ry+c v}

With these expressions (5.1) reduces to (1).

6 To verify this for the hydrogen atom (Z = 1) with a realistic orbit radius, e. g the

Bohr radius

' _—. 1 ' g — W

himcZoa) '/ 1 —(La)*
where « is the fine structure constant, ~ 1/137, might require much computing
time. The acceleration has to be very gentle, because the internal forces are weak,
and because the orbit is close to an ‘integral resonance instability’ (in the language
of particie acceierator theory). Taking a iarger value of Z, e.g. Z ~ 70, much larger
accelerations are possible and a modest computing time suffices. The idea of

obtaining the Fitzgerald and Larmor effects in such a system, by straight-

forward integration of equations of motion, was perhaps suggested to me by a
remark of J. Larmor?®.

7 Conceivably the motion of the earth relative to the sun, and the motion of the sun

10

itself relative to whatever inertial frame we adopt, could conspire to make the
earth itself momentarily at rest. But this situation would not persist as the earth
continues round the sun, assuming the latter to move rather uniformly. By the
way, the orbital velocity of the earth is about 3 x 10° cm/sec. The velocity of the
earth’s surface relative to the centre, due to the daily rotation, is about one
hundredth of this.
The only modern text-book taking essentially this road, among those with which I
am acquainted, seems to be that of L. Janossy: Theory of Relativity Based on
Physical Reality, Académiaia Kiado, Budapest (1971).
These fields follow from the point-source retarded potentials of Lienard (1898) and
Wiechert (1900). See, for example, W. K. H. Panofsky and M. Phillips: Classical
Electricity and Magnetism. Addison-Wesley (1964), Egs. 20-13, 20-15.
Unfortunatiely, for our purpose, in modern textbooks this matenal is usually
presented after chapters on relativity. But the incidental reference to relativity,
which can then appear, can be disregarded; the business at hand is just the writing
down of certain solutions of Maxwell’s equations.
J. Larmor, Aether and Matter. Cambridge (1900) p. 179. The example is used by
Larmor to illustrate a very general correspondence between stationary and moving
systems, based on what is now called the Lorentz invariance of the Maxwell
equations, which Larmor establishes to second order in v/c. Note that he does not
write separate equations for the motion of sources, like our (3) and (5). He seems to
have in mind a model in which the motion of singularities is dictated somehow by
the field equations, in analogy with the motion of vortex lines in hydrodynamics.
Larmor summarizes his general conclusions on p. 176:

‘We derive the result, correct to the second order, that if the internal forces of a
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material system arise wholly from electrodynamic actions between the systems of
electrons which constitute the atoms, then an effect of imparting to a steady
material system a uniform velocity of translation is to produce a uniform
contractlon of the system in the direction of the motion, of amount ¢ V2 op

—1/20*/C?. The electrons will occupy corresponding positions in this contracted
system, but the aethereal displacements in the space around them will not
correspond: if (f,g, ) and (g, b, c) are those of the moving system, then the electric
and magnetic displacements at corresponding points of the fixed systems will be
the values that the vectors

c,h+

v v
12 g=12f g , b)
’ (8 1.9 AnG? 4nC?

e'*(e~ 2a, b + 4nvh, c — 4rvg)

w
=]
(=

had at a time const. + vx/C? before the instant considered when the scale of time
is enlarged in the ratio £!/%",

The special example is described on p. 179:

‘As a simple illustration of the general molecular theory, let us consider the
group formed of a pair of electrons of opposite signs describing steady circular
orbits round each other in a position of rest. (The orbital velocities are in this
illustration supposed so small that radiation is not important): we can assert from

the correlation, that when this pair is moving through the aether with velocity vin a

direction lying in the plane of their orbits, these orbits relative to the translatory
motion will be flattened along the direction of v to ellipticity 1 — 1/2v?/C?, while
there will be a first-order retardation of phase in each orbital motion when the
electron is in front of the mean position combined with acceleration when behind
it so that on the whole the period will be changed only in the second-order ratio

1 + 1/20%/C2. The specification of the orbital modification produced by the translatory
motion, for the general case when the direction of that motion is inclined to the
plane of the orbit, may be made similarly: it can also be extended to an ideal
molecule constituted of any orbital system of electrons however complex’.

I think it may be pedagogically useful to start with the example, integrating the
equations in some pedestrian way, for example by numerical computation. The
general argument, involving as it does a change of variables, can (I fear) set off
premature philosophizing about space and time.

Note that W. Rindler, Am. J. Phys. 38(1970), 1111, finds Larmor insufficiently
explicit about time dilation:

‘Apparently no one before Einstein in 1905 voiced the slightest suspicion that all
moving clocks might go slow’.



