
Classe de MPSI - Lycée J. Amyot - M. BEL PHYSIQUE

Exercices de Mécanique n°1 : Cinématique

Exercice 1 Pour calculer cette masse, il faut considérer un élément de volume d3V dont la masse
serait d3m = ρ(r)d3V . De plus, nous allons utiliser les coordonnées sphériques, et donc on peut
écrire directement :
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Exercice 2 2.1 En appliquant le théorème de Thalès, on a immédiatement :

r = R0
h− z
h

2.2 Ce cylindre a pour base un disque d’aire πr2 et pour hauteur dz. On a donc immédiatement :
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2.3 Il suffit d’intégrer l’expression précédente entre 0 et h :
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On retrouve le volume du cône habituel.



Exercice 3 On part des coordonnées cylindriques où :

−−→
OM = ρ−→eρ

3.1 On a par simple projection les deux relations suivantes :

−→eρ = cosϕ−→ex + sinϕ−→ey −→eϕ = − sinϕ−→ex + cosϕ−→ey

3.2 On peut alors dériver sans problèmes, puisque −→ex et −→ey sont, eux, des vecteurs fixes :

d−→eρ
dt

= −ϕ̇ sinϕ−→ex + ϕ̇ cosϕ−→ey = ϕ̇−→eϕ
d−→eϕ
dt

= −ϕ̇ cosϕ−→ex − ϕ̇ sinϕ−→ey = −ϕ̇−→eρ

Grâce à ces deux relations, on va pouvoir retrouver la vitesse :

−→v =
dρ−→eρ
dt

= ρ̇−→eρ + ρ
d−→eρ
dt

= ρ̇−→eρ + ρϕ̇−→eϕ

De même pour l’accélération :

−→a =
dρ̇−→eρ + ρϕ̇−→eϕ

dt
= ρ̈−→eρ + ρ̇ϕ̇−→eϕ + ρ̇ϕ̇−→eϕ + ρϕ̈−→eϕ − ρϕ̇2−→eρ
= (ρ̈− ρϕ̇2)−→eρ + (2ρ̇ϕ̇+ ρϕ̈)−→eϕ

Exercice 4 On se place dans un système de coordonnées sphériques (r, θ, ϕ), avec les vecteurs
élémentaires associés (−→er ,−→eθ ,−→eϕ). On appelle H le projeté orthogonal de M dans le plan xOy.

4.1 Reprenons le vecteur −→eρ des coordonnées cylindriques. En se plaçant dans le plan OMH, on
peut voir que :

−→er = cos θ−→ez + sin θ−→eρ −→eθ = − sin θ−→ez + cos θ−→eρ

De plus, dans l’exercice 3 on avait :

−→eρ = cosϕ−→ex + sinϕ−→ey −→eϕ = − sinϕ−→ex + cosϕ−→ey

En réinjectant ces deux expressions dans les premières, on obtient le résultat demandé :

−→er = sin θ cosϕ−→ex + sin θ sinϕ−→ey + cos θ−→ez
−→eθ = cos θ cosϕ−→ex + cos θ sinϕ−→ey − sin θ−→ez
−→eϕ = − sinϕ−→ex + cosϕ−→ey



4.2 Il suffit de dériver par rapport au temps. Le principe étant le même pout les trois vecteurs,
faisons le juste pour −→er :

d−→er
dt

= θ̇ cos θ cosϕ−→ex − ϕ̇ sin θ sinϕ−→ex + θ̇ cos θ sinϕ−→ey + ϕ̇ sin θ cosϕ−→ey − θ̇ sin θ−→ez

= θ̇(cos θ cosϕ−→ex + cos θ sinϕ−→ey − sin θ−→ez ) + ϕ̇ sin θ(− sinϕ−→ex + cosϕ−→ey )

= θ̇−→eθ + ϕ̇ sin θ−→eϕ
On trouve de même les relations suivantes :

d−→er
dt

= θ̇−→eθ + ϕ̇ sin θ−→eϕ
d−→eθ
dt

= −θ̇−→er + ϕ̇ cos θ−→eϕ
d−→eϕ
dt

= −ϕ̇ sin θ−→er − ϕ̇ cos θ−→eθ

4.3 En ce qui concerne la vitesse, il suffit d’écrire que
−−→
OM = r−→er , et que :

−→v = ṙ−→er + r
d−→er
dr

= ṙ−→er + r(θ̇−→eθ + ϕ̇ sin θ−→eϕ)

Pour l’accélération, le calcul est du même type, mais un peu plus fastidieux :

−→a =
dṙ−→er + r(θ̇−→eθ + ϕ̇ sin θ−→eϕ)

dt

= r̈−→er + ṙ
d−→er
dt

+ ṙ(θ̇−→eθ + ϕ̇ sin θ−→eϕ) + r(θ̈−→eθ + θ̇
d−→eθ
dt

+ ϕ̈ sin θ−→eϕ + ϕ̇θ̇ cos θ−→eϕ + ϕ̇ sin θ
d−→eϕ
dt

)

= r̈−→er + ṙ(θ̇−→eθ + ϕ̇ sin θ−→eϕ) + ṙ(θ̇−→eθ + ϕ̇ sin θ−→eϕ) +[
r[θ̈−→eθ + ϕ̈ sin θ−→eϕ + ϕ̇θ̇ cos θ−→eϕ + θ̇(−θ̇−→er + ϕ̇ cos θ−→eϕ) + ϕ̇ sin θ(−ϕ̇ sin θ−→er − ϕ̇ cos θ−→eθ )]

= (r̈ − rθ̇2 − r sin2 θϕ̇2)−→er + (2ṙθ̇ + rθ̈ − r sin θ cos θϕ̇2)−→eθ + (2ṙϕ̇ sin θ + rϕ̈ sin θ + 2rϕ̇θ̇ cos θ)−→eϕ

Exercice 5 5.1 On trouve immédiatement que ẋ2 + ẏ2 = R2
0. On a donc un mouvement circulaire

dans le plan xOy.

5.2 Le système de coordonnées le plus adapté est alors évidemment le système de coordonnées
cylindriques.

5.3 On a alors immédiatement, puisque de façon générale x = ρ cosϕ et y = ρ sinϕ :

ρ = R0 ϕ = ωt z = z

On a un mouvement hélicöıdal.

Exercice 6 Mouvement oscillatoire dérivant

6.1 Il suffit d’intégrer l’expression de l’accélération, sans oublier les constantes d’intégration :

−→v =
(a0

ω
sin(ωt+ ϕ) + Cste

)−→ex
Or à t = 0, −→v =

−→
0 , donc Cste = −a0

ω
sinϕ :

−→v =
a0

ω
(sin(ωt+ ϕ)− sinϕ)−→ex



6.2 L’intégrale du sinus est nul sur une période, il ne reste donc plus que le terme constant. On
trouve directement :

< −→v >= −a0

ω
sinϕt

6.3 On a un mouvement oscillant mais donc la position moyenne possède un mouvement rectiligne
uniforme.

Exercice 7 Mouvement sur une cardiöıde.

7.1 On a simplement :

−→
dl = dρ−→eρ + ρdϕ−→eϕ

7.2 On a :

ds =
√
dρ2 + ρ2dϕ2

=
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2
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7.3 ds étant le module du déplacement élémentaire le long de la courbe, il suffit d’”additionner”

tous ces petits déplacements élémentaires, et donc d’intégrer :

L =

ˆ 2π

0
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ϕ
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2
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7.4 On voit qu’on va refaire les mêmes calculs que pour l’évaluation de ds. On a alors :

v =
ds

dt
= ρ0

∣∣∣cos
ϕ

2

∣∣∣ dϕ
dt

Exercice 8 La voix de son Mâıtre



8.1 Une projection montre que ẋ = v cos θ et que ẏ = v sin θ

De plus, la position du chien est donnée par
−−→
OM =

−→
OA+

−−→
AM soit en projection :

x =
−−→
OM.−→ex = v1t− r cos θ ; y = −r sin θ

puisque la position du mâıtre vaut
−→
OA = v1t

−→ex .
On en déduit en dérivant la première relation que :

ẋ = v1 − ṙ cos θ + rθ̇ sin θ

et la seconde que :
ẏ = −ṙ sin θ − rθ̇ cos θ

En isolant rθ̇ dans la seconde, on trouve :

rθ̇ = −(ṙ + v) sin θ

cos θ
= −(ṙ + v) tan θ

qui mène en remplaçant dans la première, à :

v cos θ = v1 − ṙ cos θ − ṙ sin2 θ

cos θ
− v sin2 θ

cos θ

soit en multipliant tout par cos θ :

v cos2 θ = v1 cos θ − ṙ − v sin2 θ

et donc : �� ��ṙ = v1 cos θ − v

En réinjectant cette expression dans celle de rθ̇,on trouve :�
�

�
�rθ̇ = −(v1 cos θ − v + v) tan θ = −v1 sin θ

8.2 L’élimination de dt se fait en faisant le rapport de la première par la seconde :

1

r

dr

dθ
=

v

v1 sin θ
− cos θ

sin θ

Pour vérifier que la solution proposée fonctionne, calculons :

dr

dθ
= d

[
− cos θ

sin2 θ
tan

v
v1
θ

2
+

1

sin θ

v

2v1

1

cos2 θ
2

tan
v
v1
−1 θ

2

]

ce qui, multiplié par 1
r

= sinθ
d tanv/v1 θ

2

, donne :

1

r

dr

dθ
= −cos θ

sin θ
+

v

2v1

1

cos2 θ
2

tan θ
2

Or cos2 θ
2

tan θ
2

= sin θ
2

cos θ
2

= sin θ
2

Ce qui mène bien à :

1

r

dr

dθ
= −cos θ

sin θ
+

v

v1 sin θ

Cette solution vaut bien d quand θ = π
2
, ce qui est conforme aux conditions initiales.

8.3 Lorsque θ tend vers 0, sin θ ≈ θ et tan θ/2 ≈ θ
2

donc r ≈ d
2v/v1

θ
v
v1
−1

On a donc deux possibi-
lités :



– si v > v1 (le chien va plus vite que le mâıtre), alors r tend vers zéro lorsque θ tend vers zéro :
le chien rattrape le mâıtre.

– si v1 < v (le mâıtre va plus vite), alors r tend vers plus l’infini : le chien va finir sur l’axe x,
mais restera en arrière de son mâıtre.

8.4 On sait que rθ̇ = −v1 sin θ, ce qui mène à :�
�

�

dt = − d

v1 sin2 θ
tan

v
v1
θ

2
dθ

Il faut que v > v1 pour que le chien rattrape son mâıtre. Initialement, θ = π
2

et au final 0, donc
le temps mis pour rattraper le mâıtre vaut :

T =

ˆ 0

π/2

− d

v1 sin2 θ
tan

v
v1
θ

2
dθ

ce qui cöıncide bien avec l’expression de l’énoncé, avec λ = v
v1

.
On a donc :

T =
vv1

v2 − v2
1

qui n’a de sens (c’est-à-dire est positif) si v > v1.


