
Logique

1)

classe JeuPoursuite

privé :
plateau : tableau de booleens de [1à10,1à5]
joueur1 : entier
joueur2 : entier
tourJ1 : entier
tourJ2 : entier
joueurCourant : entier

public :
constructeur JeuPoursuite(jeu : tableau de booleens de [1à10,1à5])
methode getJoueur1() → entier
methode getJoueur2 () → entier
methode getTourJ1() → entier
methode getTourJ2() → entier
methode getJoueurCourant() → entier
methode initialiser()
methode jouer ()

privée :
methode jouerCoup(joueur : entier) → booleen
methode jouerTour(joueur : entier) → booleen
methode joueurSuivant() → entier

constructeur jeuPoursuite (….)

pour i allant de 1à10 faire
pour j allant de 1à5 faire

plateau[i,j] ← jeu[i,j]
fin pour

fin pour
initialiser()

fin constru

methode initialiser

joueur1 ← 1
joueur2 ← 26
tourJ1 ← 0
tourJ2 ← 0
joueurCourant ← 1

fin methode

methode getJoueur1() → entier

retourner joueur1
fin methode
methode getJoueur2() → entier

retourner joueur2
fin methode

methode getJoueurCourant() → entier
retourner joueurCourant

fin methode

methode jouerCoup (joueur : entier) → booleens

dé : entier
dé ← lancerDés()
joueur ← joueur + dé
si joueur > 50

joueur ← joueur MOD 50
si getJoueurCourant = 1

tourJ1++
sinon

tourJ2++
fin si

fin si
si joueurCourant = 1

joueur1<-joueur
si ((joueur1 > joueur2 et tourJ1 = tourJ2)OU(joueur1<joueur2 et tourJ1>tourJ2))

retourner vrai
sinon

retourner faux
fin

sinon

si ((joueur2 > joueur1 et tourJ1=tourJ2) OU (joeur2<joueur1 et tourJ2>tourJ1))
retourner vrai

sinon
retourner faux

fin
fin

fin methode

methode jouerTour(joueur ↔ : entier,) → booleen
x,y : entier
ok,repeat : booleen
repeat ← vrai
ok ← jouerCoup(joueur)
tant que(!(ok)) ET (repeat)

si joueur > 10
x ← (joueur DIV 10)+ 1

si joueur MOD 10 = 0
y<- 10

sinon
y ← joueurMod10

sinon
x ← 1
si joueur MOD 10 = 0

y <- 10
sinon

y<- joueur MOD 10

fin si
si plateau [x,y]!= vrai

repeat ← faux

sinon
ok ← jouerCoup(joueur)

fin si
fin TQ
retourner ok
fin methode

methode joueurSuivant() → entier
si getJoueurCourant=1

joueurCourant ← 2
sinon

joueurCourant ← 1
fin si
retourner joueurCourant

fin methode

methode jouer()
enJeu : booleens

tant que (enJeu)
enJeu <- jouerTour(joueurCourant)
joueurCourant ← joueurSuivant()

fin tant que
si joueurCourant = 1

ecrire « le joueur 1 a gagné «
sinon

ecrire « le joueur2 a gagné »
fin si

fin methode

EX2)

structure Union
date : date
num1:entier
nom1 : chaine
num2 : entier
nom2 : chaine
fin structure

module Divorces(Divorces, Unions , fichier en entrée d'Union
marié,divorcé,update : Liste d'Union
tailleUnions,tailleDivorces,i,j : entier
mariage,divorce : Union
Unions.ouvrir
mariage ← Unions.lire()
marié ← nouvelle liste d'Union ()
tant que non eof(Unions)

marié.ajouter(mariage)
tailleUnion++

mariage ← Unions.lire()
fin TQ
Unions.fermer()
Divorces.ouvrir()
divorce ← Divorces.lire()
divorcé ← nouvelle liste d'Union()
tant que non eof(Divorces)

divorcé.ajouter(divorce)
tailleDivorce++
divorce ← Divorce.lire()

fin tant que
Divorces.fermer()

update ← nouvelle Liste d'Unions
tant que (i <= marié.taille())

ok ← recherche(marié.get(i).num1,marié.get(i).nom1,Divorces)
si!(ok)

update.ajouter(marié.get(i))
fin si

fin Tant que
record ← rechercheMoisRecord(Divorces)
UpdateUnions : fichier sortie d' Union
UpdateUnion.ouvrir()
enr : Union
tant que i<= update.taille()

UpdateUnion.ecrire(Divorces .get(i))
fin tantque
UpdateUnion.fermer()

fin module

module rechercheMoisRecord(liste : liste d'Union)
calendrier : nouveau tableau de [1à12] d'entier
tant que i<= liste.taille()

tab[liste.get(i).date.getMois()]++
fin tant que
max ← tab[1]
maxI ← 1
pour i allant de 2 à tab.taille()

si tab[i] > max
i ← maxI

fin si
fin pour
retourner maxI

fin module

module recherche(num1:entier, nom1 : chaine, liste : liste d'union) → booleen
ok : booleen
ok ← faux
pour i allant de 1 a liste.taille()

si liste.get(i).num1 = num1 ou liste.get(i).num2 = num1

si liste.get(i).nom1 = nom1 ou liste.get(i).nom2 = nom1
 ok ← vrai

fin si
fin pour
retourner ok

fin module

