)

_ Logique

Ecnre un algorithme de simulation ds ce jen gul se teminers par affichage du
valncuer ainsi gue le nombre de fours complets parcourus par ce vaingueur.

Lz lancement du dé sera simmlé par 'appel du module sans argument LancerDe()
gul refourne une valeur aléatoire entre 1 et 8

Aide : Defimssez la classe JeuP oursuite

* Elle permet de représenter

* le circwnt des 50 cases

* la position des 2 joueurs

+ le nombre de tours effectués par chacun des jousurs

* gui est le jonenr courant

* Plusieurs possibilités existent | faites votre chox |

* Le constructeur re¢oit la configumtion du cirewt {pour sevoir s1 les cases
confignnent wai 01 faux)

* La méthode initialisen]) initialise le jeu (placement des joueurs, ...

* La methods jouer() lance le jeu jusgu’a son terme et donne le vainguenr et le
nombre de tours effectuss.

» Vous étes également fortement moeites a dé finer d'autres methodes en povve pour
modulariser an misux votre code. Par exemple, on poursit définr

+ la méthode € jouerCoup » g joue pour un joueur ef indigue 51l a ratiaps
l'anire joweur (sans e petiflon s1 on ammdve SUT UNE case wai)

+ la méme méthode « jouerTour » effectue la méme tache mais avec
répetition g1 on anTve surune case waio On fera évidemment appel 4 la
methode ci-dessus.

* la méthode ¢ joveurSuivant » gu permet de passer au jousur suivant.

Forec ces 3 méthodes, la méthode publigue £ jouer » devient triviale.

classe JeuPoursuite

privé :

plateau : tableau de booleens de [1a10,1a5]
joueurl : entier

joueur? : entier

tourJ1 : entier

tourJ2 : entier

joueurCourant : entier

public :

constructeur JeuPoursuite(jeu : tableau de booleens de [1a10,1a5])
methode getJoueurl() — entier

methode getJoueur2 () — entier

methode getTourJ1() — entier

methode getTourJ2() — entier

methode getJoueurCourant() — entier

methode initialiser()

methode jouer ()

privée :

methode jouerCoup(joueur : entier) — booleen
methode jouerTour(joueur : entier) — booleen
methode joueurSuivant() — entier

constructeur jeuPoursuite (....)

pour i allant de 1210 faire
pour j allant de 1a5 faire
plateau[i,j] « jeu[i,j]
fin pour
fin pour
initialiser()
fin constru

methode initialiser

joueurl «— 1

joueur2 «— 26

tourJ1 <0

tour]2 < 0

joueurCourant «— 1
fin methode

methode getJoueurl() — entier

retourner joueurl
fin methode
methode getJoueur2() — entier

retourner joueur2
fin methode

methode getJoueurCourant() — entier
retourner joueurCourant
fin methode

methode jouerCoup (joueur : entier) — booleens

dé : entier
deé « lancerDés()
joueur « joueur + dé
si joueur > 50
joueur «— joueur MOD 50
si getJoueurCourant = 1
tourJ 1++
sinon
tourJ2++
fin si
fin si
si joueurCourant = 1
joueurl<-joueur
si ((joueurl > joueur2 et tourJ1 = tourJ2)OU(joueurl<joueur2 et tour] 1>tourJ2))
retourner vrai
sinon
retourner faux
fin

sinon

si ((joueur2 > joueurl et tourJ1=tourJ2) OU (joeur2<joueurl et tourJ2>tourJ1))
retourner vrai
sinon
retourner faux
fin
fin
fin methode

methode jouerTour(joueur < : entier,) — booleen
X,y : entier
ok,repeat : booleen
repeat «— vrai
ok «— jouerCoup(joueur)
tant que(!(ok)) ET (repeat)
si joueur > 10
X «— (Joueur DIV 10)+ 1
si joueur MOD 10=0
y<- 10
sinon
y «— joueurMod10
sinon
X« 1
si joueur MOD 10=0
y<-10
sinon
y<- joueur MOD 10

fin si
si plateau [x,y]!= vrai
repeat «— faux

sinon
ok «— jouerCoup(joueur)

fin si

fin TQ
retourner ok
fin methode

methode joueurSuivant() — entier
si getJoueurCourant=1
joueurCourant «— 2
sinon
joueurCourant «— 1
fin si
retourner joueurCourant
fin methode

methode jouer()
enJeu : booleens

tant que (enJeu)
enJeu <- jouerTour(joueurCourant)
joueurCourant «— joueurSuivant()
fin tant que
si joueurCourant = 1
ecrire « le joueur 1 a gagné «
sinon
ecrire « le joueur2 a gagné »
fin si
fin methode

EX2)
Une commune gere la liste de ges couples manes dans un ficloer UNIONS. Ce
ficluer est classe dans |'ordre cloonologigue des meanages et chacun de ses
enregistrements, de type Uhion, confient les champs survants

« DATE Date date du manage

« NOMIL chaing nom du premisr conjoint

= NUM chame numém de registre national du premier conjomt
« NOM2 chame nom du second conjoint

= NUM2 cliame numém de registre national du second conjont

Les demandes de drvorces dumnt une certaine anncée ont été stockées dans le fichzer
DIVORCES et ses enregistrements sont similaires a ceux de UNIONS - chague
enregistrement contient galement les noms et numéros des dewx conjoints
demandant la séparation, et Ia date est cette fois-ci celle du divorce. Le fichoer est
¢galement classe par ordre cluonologigue des demandes de divorces. On peut
supposer 'absence d’emeur, ¢ 'est-a-dire que tous les enregistre ments de
DIVORCES ont été répertonés dans UNIONS.

Surbase de ces données, écnre um algonthme gui

1. crée wn fichier UNIONSUPDATE résultant de la nuse & jour du fichier

UNIONS. Le nonreean fichier ne contiendra plug les couples droneés
renseignées dans le fichier des divorces. Pour comparer les confenus des fichiers
en entrée, on se flem wiguement aux munéos de registrs national (car il est
possible que des persornes differentes paissent avoir le méme nom). Atfention,
1l est possible gue les noms des conjoints solent irvversés dans DIVORCES par
rapport 4 l'ondre de UNIONS. Veillez aussi a comparer les deux noms avent de

structure Union suppnmer un enregistrement de UNIONS, car on peut imaginer le cas de

date : date personnes s2 remanant et drorgant plusieurs fois dans Iannée |

num/:entier 2. donne le mois de l'année on le nombre de drvoree a été le plus éleve.
noml : chaine

num?2 : entier

nom2 : chaine

fin structure

module Divorces(Divorces, Unions , fichier en entrée d'Union
marié,divorcé,update : Liste d'Union
tailleUnions,tailleDivorces,i,j : entier
mariage,divorce : Union
Unions.ouvrir
mariage «<— Unions.lire()
marié «— nouvelle liste d'Union ()
tant que non eof(Unions)
marié.ajouter(mariage)
tailleUnion++

mariage «<— Unions.lire()
fin TQ
Unions.fermer()
Divorces.ouvrir()
divorce «— Divorces.lire()
divorcé «— nouvelle liste d'Union()
tant que non eof(Divorces)
divorcé.ajouter(divorce)
tailleDivorce++
divorce «<— Divorce.lire()
fin tant que
Divorces.fermer()

update «— nouvelle Liste d'Unions
tant que (i <= marié.taille())
ok < recherche(marié.get(i).num1,marié.get(i).nom1,Divorces)
si!(ok)
update.ajouter(marié.get(i))
fin si
fin Tant que
record «— rechercheMoisRecord(Divorces)
UpdateUnions : fichier sortie d' Union
UpdateUnion.ouvrir()
enr : Union
tant que i<= update.taille()
UpdateUnion.ecrire(Divorces .get(1))
fin tantque
UpdateUnion.fermer()
fin module

module rechercheMoisRecord(liste : liste d'Union)
calendrier : nouveau tableau de [1a12] d'entier
tant que i<= liste.taille()
tab[liste.get(i1).date.getMois() |++
fin tant que
max «— tab[1]
maxl « 1
pour i allant de 2 a tab.taille()
si tab[i] > max
1 «— max]
fin si
fin pour
retourner maxl
fin module

module recherche(numl:entier, noml : chaine, liste : liste d'union) — booleen
ok : booleen
ok « faux
pour i allant de 1 a liste.taille()
st liste.get(i).num1 = numl ou liste.get(i).num2 = numl

si liste.get(i).nom1 = noml ou liste.get(i).nom2 = noml
ok «— vrai
fin si
fin pour
retourner ok
fin module

