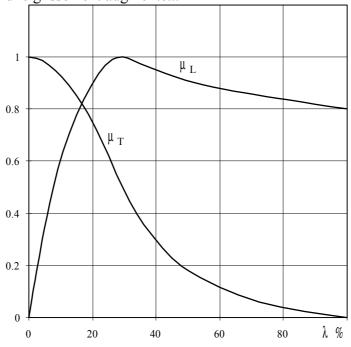

Analyse du contact pneu/sol (ellipse de Kann).


 \vec{F} est l'action du sol sur le pneu. \vec{N} sa projection normale, \vec{T} sa projection dans le plan de contact (tangente donc). Cette composante \vec{T} (<u>du sol sur le pneu</u>) s'oppose au déplacement (<u>du pneu par rapport au sol</u>) caractérisé ici par la vitesse \vec{V} . On projette \vec{T} sur les deux directions longitudinale et transversale pour introduire les facteurs d'adhérence caractéristiques μ_L et μ_T . Les composantes de T vérifient alors les relations : $|T_L| \le \mu_L.N$ et $|T_T| \le \mu_T.N$. Leurs valeurs maxi définissent l'ellipse de Kann.

Courbes d'évolution des paramètres d'adhérence

On représente μ_L et μ_T en fonction du "pseudo-glissement", ou "glissement spécifique" défini par $\lambda = \frac{|V_V - V_R|}{|V_V|}$ où V_V est la vitesse du véhicule et V_R la vitesse circonférentielle du point théorique de

contact pneu/sol. Une roue bloquée a un glissement de 100%. Une roue idéalement (?) modélisée par un contact ponctuel avec roulement sans glissement a un glissement nul, et une adhérence... nulle aussi !!! Ce pseudo-glissement est une conséquence de la souplesse du pneumatique. En pratique, un véhicule roulant à vitesse constante à un λ d'environ 10%. Au freinage de 15 à 25 %. La présence de pluie change peu ces valeurs, par contre modifie bien sûr les valeurs des μ . μ L maxi (à 30% de glissement) vaut 1 voire 1,2 sur chaussée sèche (pneus neufs), 0,6 sur route mouillée, 0,2 sur verglas. Il diminue de 20 (route sèche) à 30% (mouillée) par rapport à ces valeurs maxi lorsque le glissement est de 100%. Par contre μ T, lui, se casse la figure quand le glissement augmente...

