Bonjour,
Il convient de préciser que l’étude du CNES concerne le premier étage d’un TSTO, les choix techniques doivent donc être, on sans doute, très différents de ceux qui avaient été envisagés par REL pour le défunt SKYLON.
J’ai trouvé un peu plus d’infos sur les concepts étudiés par les chercheurs aux États-Unis en ce qui concerne un TSTO dont le premier étage serait propulsé par des moteurs SABRE :
- Two Stage to Orbit Conceptual Vehicle Designs using the SABRE Engine (Hellman et al., 2016)
En cherchant un peu dans la littérature spécialisée de l’année dernière, j’ai également remarqué qu’au moins quatre équipes chinoises étudiaient de très près les travaux de Reaction Engines sur leur moteur SABRE en matière d’échangeur de chaleur pour une application à un lanceur orbital.The Air Force Research Laboratory Aerospace Systems Directorate, High Speed Systems Division (AFRL/RQH) entered into a Cooperative Research and Development Agreement (CRADA) with Reaction Engines, Ltd. (REL) in 2014 to understand their SABRE (Synergetic AirBreathing Rocket Engine) engine design and pre-cooler technology. As part of this CRADA, AFRL with technical analysis from SpaceWorks Enterprises, Inc. developed a conceptual design for a Two Stage to Orbit (TSTO) access to space vehicle utilizing the SABRE engine to power the first stage.
Two different TSTO configurations were designed and will be presented in this paper. The first option is a partially reusable TSTO concept with the booster stage being reusable and powered by the SABRE. The upper stage is an expendable all rocket powered stage. This vehicle is sized to put a 5,000 lbm payload into a 100nmi orbit with a 28.5° inclination launched from Cape Canaveral Air Force Station (CCAFS). This is about the same payload class as the Minotaur VI[SUP]1[/URL]. The second vehicle is a full reusable TSTO concept with booster stage powered by the SABRE and the upper stage all rocket powered. It is sized for 20 klbm payload into a 100nmi orbit with a 28.5° inclination launched from CCAFS. The payloads sizes are different since they were for different AFRL internal studies (discussion of these studies is beyond the scope of this conference paper).
Les quatre équipes chinoises travaillent au Harbin Institute of Technology, à la Rocket Force University of Engineering, et aux Universités Xiamen et Nanjing :
- Thermal Protection System and Thermal Management for Combined-Cycle Engine: Review and Prospects (janvier 2019)
- Effect of post-bond heat treatment on microstructural evolution and mechanical properties of brazed ultrathin-walled structure (janvier 2019)
- Precooler-design & engine-performance conjugated optimization for fuel direct precooled airbreathing propulsion (mars 2019)
- Experimental investigation on thermal and combustion performance of a combustor with microchannel cooling (août 2019)
- Thermodynamic analysis of the influential mechanism of fuel properties on the performance of an indirect precooled hypersonic airbreathing engine and vehicle (septembre 2019)
- Configuration optimization of the tandem cooling-compression system for a novel precooled hypersonic airbreathing engine (octobre 2019)
- Thermodynamic assessment on performance extremes of the fuel indirect precooled cycle for hypersonic airbreathing propulsion (novembre 2019)
- Study on the Influence of Tube Curvature on Heat Transfer Characteristics of High Efficiency Air Pre-cooler (décembre 2019)
- Control-oriented low-speed dynamic modeling and trade-off analysis of air-breathing aerospace vehicles (décembre 2019)
Apparemment, certains des résultats de ces équipes chinoises ont aussi été présentés à des conférences :
- Rapid Aerodynamic Shape Optimization With Payload Size Constraints for Hypersonic Vehicle (juin 2019)
- Integrated Low-speed Dynamic Modeling of Air-breathing Aerospace Vehicles (octobre 2019)
Cordialement.
-----