s'il vous plait comment montrer que la limite de x au carré -1 sur x au carré est -l'infini lorsque x tend vers 0
-----
10/02/2016, 20h02
#2
invitec79afec4
Date d'inscription
janvier 1970
Messages
10
math
s'il vous plait comment montrer que la limite de x au carré -1 sur x au carré est -l'infini lorsque x tend vers 0
10/02/2016, 20h12
#3
invite9574cf8c
Date d'inscription
janvier 1970
Messages
48
Re : math
Bonsoir
(X^2-1)/(x^2) en 0 ?
tu peux dire que X^2-1 est equivalent a -1 en 0
donc (X^2-1)/(x^2) equivalent a (-1)/(x^2), et ce n'est plus indeterminé, qd x=>0, f(x)>-l'infini
10/02/2016, 22h43
#4
Duke Alchemist
Date d'inscription
juin 2005
Localisation
Frontière 59-62
Âge
47
Messages
9 003
Re : math
Bonsoir.
(x²-1)/x² = 1 - 1/x²
et si x tend vers 0, vers quoi tend 1/x² ?... Conclus.
Dernière modification par Duke Alchemist ; 10/02/2016 à 22h45.
Aujourd'hui
A voir en vidéo sur Futura
11/02/2016, 09h39
#5
Seirios
Date d'inscription
mai 2005
Localisation
Dans le plan complexe
Âge
33
Messages
10 382
Re : math
Bonjour,
Utiliser un équivalent pour répondre à une question de la section collège/lycée, c'est peut-être un peu exagéré, d'autant plus que ce n'est pas nécessaire ici. Doublon avec ce fil.
If your method does not solve the problem, change the problem.
11/02/2016, 12h51
#6
invite9574cf8c
Date d'inscription
janvier 1970
Messages
48
Re : math
Ha oui effectivement j'avais cru être dans une autre catégorie dsl
11/02/2016, 20h01
#7
invitec79afec4
Date d'inscription
janvier 1970
Messages
10
Re : math
oui vous avez raison mais ici au maroc nous sommes obligé de démontrer les limites par la définition d'epsilon
11/02/2016, 20h23
#8
Seirios
Date d'inscription
mai 2005
Localisation
Dans le plan complexe
Âge
33
Messages
10 382
Re : math
Dans ce cas, l'indication de Duke Alchemist doit te permettre de conclure.
If your method does not solve the problem, change the problem.