Bonjour, cliquez-ici pour vous inscrire et participer au forum.
  • Login:



+ Répondre à la discussion
Affichage des résultats 1 à 5 sur 5

Démonstration de l'égalité de Parseval

  1. Jack75014

    Date d'inscription
    mai 2016
    Messages
    17

    Démonstration de l'égalité de Parseval

    Bonjour à tous,

    J'ai une question au sujet d'une démonstration de l'égalité de Parseval dont le début est visible sur cette photo. Je ne comprends pas l'argument le "théorème de Pythagore donne" ou plus exactement je n'arrive pas à montrer que Sn(f), une somme partielle de Fourier de f, et f sont orthogonaux. Si quelqu'un pouvait donc m'expliquer cette la première égalité, cela m'aiderait beaucoup.
    Parseval.jpg

    Merci à tous,

    -----

     


    • Publicité



  2. God's Breath

    Date d'inscription
    décembre 2007
    Messages
    9 506

    Re : Démonstration de l'égalité de Parseval

    Bonjour,

    Citation Envoyé par Jack75014 Voir le message
    je n'arrive pas à montrer que Sn(f), une somme partielle de Fourier de f, et f sont orthogonaux
    Merci à tous,
    C'est normal, puisque Sn(f) et f ne sont pas orthogonaux... mais f-Sn(f) et Sn(f) le sont.

    Si tu utilises correctement le théorème de Pythagore, ||f-Sn(f)||^2 et ||Sn(f)||^2 sont les carrés des cathètes dont la somme ||f||^2 est le carré de l'hypothénuse.
    Dernière modification par God's Breath ; 02/01/2018 à 22h11.
    Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.
     

  3. Jack75014

    Date d'inscription
    mai 2016
    Messages
    17

    Re : Démonstration de l'égalité de Parseval

    Merci pour votre réponse,

    Pourriez-vous du coup expliquer pourquoi f-Sn(f) et Sn(f) le sont ?
    Vous semblez suggérer que l'explication peut être vue géométriquement mais je n'arrive pas à me représenter cela. Par ailleurs, en essayant de calculer ( f-Sn(f) | Sn(f) ), je ne trouve pas. C'est assez frustrant car je suis convaincu de passer à côté de quelque chose d'important en ne comprenant pas les enjeux d'orthogonalité dans l'approximation des fonctions via séries de Fourier.

    Merci encore pour votre aide !
     

  4. God's Breath

    Date d'inscription
    décembre 2007
    Messages
    9 506

    Re : Démonstration de l'égalité de Parseval

    La série de Fourier est définie par projection orthogonale.
    Les coefficients de Fourier sont définis par des produits scalaires:

    ce sont donc les coordonnées de la projection orthogonale sur le sous-espace vectoriel engendré par la famille .
    Lorsqu'on décompose sur et les deux composantes sont et qui sont donc orthogonaux.
    Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.
     

  5. God's Breath

    Date d'inscription
    décembre 2007
    Messages
    9 506

    Re : Démonstration de l'égalité de Parseval

    Citation Envoyé par Jack75014 Voir le message
    en essayant de calculer ( f-Sn(f) | Sn(f) ), je ne trouve pas.
    Je reviens sur ce calcul. Tout est basé sur le produit scalaire des exponentielles données par le symbole de Kronecker : .

    Ensuite, il faut y aller progressivement.

    Pour :



    donc : . Ensuite, par combinaison linéaire:

    Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.
     


    • Publicité




    • Publicité







Sur le même thème :


    301 Moved Permanently

    301 Moved Permanently


    nginx/1.2.1



 

Discussions similaires

  1. Égalité de Parseval
    Par sasha.v dans le forum Physique
    Réponses: 0
    Dernier message: 31/10/2013, 09h50
  2. Démonstration d'une égalité
    Par tpscience dans le forum Mathématiques du supérieur
    Réponses: 9
    Dernier message: 27/10/2013, 15h18
  3. Réponses: 0
    Dernier message: 22/11/2011, 16h59
  4. demonstration d'une egalité
    Par ciril dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 24/12/2008, 18h46
  5. Egalité de parseval et Matlab
    Par bartaban dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 15/12/2008, 11h01