Bonjour, cliquez-ici pour vous inscrire et participer au forum.
  • Login:



+ Répondre à la discussion
Page 1 sur 2 1 DernièreDernière
Affichage des résultats 1 à 15 sur 22

intersection réduite à {0}? pas si sûr...

  1. vince3001

    Date d'inscription
    septembre 2007
    Âge
    28
    Messages
    291

    intersection réduite à {0}? pas si sûr...

    Bonjour
    voila l'énoncé de mon problème :
    "Soit E un espace euclidien de dim finie supérieure ou égale à 2. On notera (|) son produit scalaire et || || la norme associée. Ds toute la suite, u et v sont 2 vecteurs de E, tous deux non nuls et on définit un endomorphisme f de E en posant :f(x)=x-(v|x)u pour tout x ds E"

    J'ai montré que :
    u est vecteur propre de f et que =1-(v|u) est valeur propre associée
    =1 est valeur propre de f et l'espace propre associé correspond aux vecteurs orthogonaux à v

    Je dois maintenant montrer que :
    "On suppose que (u|v) différent de 0. Montrer que E=E() E()"

    Voilà mon pb :
    "on prend x ds l'intersection des 2 ensembles et on cherche ds un premier tps à montrer que x=0
    on a x orthogonal à v car x ds E()
    de plus x est ds E() dc ... dc quoi? x n'est pas forcément colinéaire à u vu que l'on ne connaît pas la dimension de E()! Si cela avait était la cas la conclusion ne m'aurait pas posée de pb (si elle était égale à 1 tout du moins)...

    Merci de votre collaboration

    -----

     


    • Publicité



  2. God's Breath

    Date d'inscription
    décembre 2007
    Messages
    9 334

    Re : intersection réduite à {0}? pas si sûr...

    Citation Envoyé par vince3001 Voir le message
    de plus x est ds E() dc ... dc quoi?
    ... donc ...
    Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.
     

  3. vince3001

    Date d'inscription
    septembre 2007
    Âge
    28
    Messages
    291

    Re : intersection réduite à {0}? pas si sûr...

    en effet...tout simplement
    Dernière modification par vince3001 ; 14/03/2009 à 14h09.
     

  4. vince3001

    Date d'inscription
    septembre 2007
    Âge
    28
    Messages
    291

    Re : intersection réduite à {0}? pas si sûr...

    Merci beaucoup!
     

  5. vince3001

    Date d'inscription
    septembre 2007
    Âge
    28
    Messages
    291

    Re : intersection réduite à {0}? pas si sûr...

    J'ai une nouvelle question...
    Si un f admet une seule valeur propre, est-ce que sa multiplicité est alors égale à la dimension de E?
     


    • Publicité



  6. God's Breath

    Date d'inscription
    décembre 2007
    Messages
    9 334

    Re : intersection réduite à {0}? pas si sûr...

    Qu'appelles-tu « multiplicité » d'une valeur propre ?
    Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.
     

  7. vince3001

    Date d'inscription
    septembre 2007
    Âge
    28
    Messages
    291

    Re : intersection réduite à {0}? pas si sûr...

    c'est le nombre de fois que celle-ci annule le polynome caractéristique...
     

  8. vince3001

    Date d'inscription
    septembre 2007
    Âge
    28
    Messages
    291

    Re : intersection réduite à {0}? pas si sûr...

    j'ai la forte impression que la réponse est oui car le polynome caractéristique est de degré n
    confirmation?
     

  9. God's Breath

    Date d'inscription
    décembre 2007
    Messages
    9 334

    Re : intersection réduite à {0}? pas si sûr...

    Tout dépend si le corps de base est algébriquement clos ou non.
    Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.
     

  10. Antho07

    Date d'inscription
    octobre 2007
    Âge
    29
    Messages
    1 121

    Re : intersection réduite à {0}? pas si sûr...

    Bonjour,
    par exemple l'endomorphsime de R^3 dont la représentation dans la base canonique est:




    admet une seule valeur propre 1 (de multiplicité algebrique 1)
     

  11. vince3001

    Date d'inscription
    septembre 2007
    Âge
    28
    Messages
    291

    Re : intersection réduite à {0}? pas si sûr...

    Comment savoir si le corps de base est algébriquement clos ou non?
    je ne connais pas ce terme...
     

  12. God's Breath

    Date d'inscription
    décembre 2007
    Messages
    9 334

    Re : intersection réduite à {0}? pas si sûr...

    L'espace est supposé euclidien, donc le coprsde base est qui n'est pas algébriquement clos.

    Reprends l'exemple de Antho07, ou plus simplement l'endomorphisme de matrice , et tu auras la réponse sur la multiplicité d'une valeur propre unique.
    Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.
     

  13. Antho07

    Date d'inscription
    octobre 2007
    Âge
    29
    Messages
    1 121

    Re : intersection réduite à {0}? pas si sûr...

    Algebriquement clos signifie que tout polynôme sur le corps est scindé.

    C'est à dire que tout polynome P peut s'écrire sous la forme



    (Autrement dit tout polynome non constant admet au moins une racine)


    Par exemple ,

    n'est pas algebriquement clos: par exemple le polynome n'admet pas de racines réelles

    est algebriquement clos
    (theorème de d'Alembert -Gauss)
     

  14. vince3001

    Date d'inscription
    septembre 2007
    Âge
    28
    Messages
    291

    Re : intersection réduite à {0}? pas si sûr...

    ok merci...ça fait pas mes affaires, ms au moins j'aurais appris des trucs.
     

  15. God's Breath

    Date d'inscription
    décembre 2007
    Messages
    9 334

    Re : intersection réduite à {0}? pas si sûr...

    Citation Envoyé par vince3001 Voir le message
    ça fait pas mes affaires
    et si tu nous disais tout simplement sur quelle difficulté tu achoppes ?
    Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.
     


    • Publicité







Sur le même thème :





 

Discussions similaires

  1. reduite de jordan
    Par someone00 dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 06/05/2009, 13h00
  2. probleme sur les intersection de deux sous espace affines
    Par jonh35 dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 10/03/2009, 17h07
  3. Réduite de JORDAN
    Par Gpadide dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 12/01/2007, 12h26
  4. TV Panasonic - Image réduite sur bas de l'écran
    Par Dagostino dans le forum Dépannage
    Réponses: 2
    Dernier message: 26/07/2006, 20h22
  5. masse reduite
    Par groizme dans le forum Chimie
    Réponses: 4
    Dernier message: 01/01/2005, 16h54