Bonjour à tous
je désire calculer la position du soleil, et parr hazard j'ai trouvé un algorithme sur le net.
quelqu'un peu m'expliquer cet algorithme .
que signifie alpha et delta? et est ce qui'ils sont suffisant pour déterminer la position du soleil??
merci infiniment d'avance
Code:Position of the Sun at 11:00 UT on 1997 August 7th 1. Find the days before J2000.0 (d) from the table d = 11/24 + 212 + 7 - 1096.5 = -877.04167 2. Find the Mean Longitude (L) of the Sun L = 280.461 + 0.9856474 * d = -583.99284 + 720 (add multiples of 360 to bring in range 0 to 360) = 136.00716 3. Find the Mean anomaly (g) of the Sun g = 357.528 + 0.9856003 * d = -506.88453 + 720 = 213.11547 4. Find the ecliptic longitude (lambda) of the sun lambda = L + 1.915 * sin(g) + 0.020 * sin(2*g) = 134.97925 (note that the sin(g) and sin(2*g) terms constitute an approximation to the 'equation of centre' for the orbit of the Sun) beta = 0 (by definition as the Sun's orbit defines the ecliptic plane. This results in a simplification of the formulas below) 5. Find the obliquity of the ecliptic plane (epsilon) epsilon = 23.439 - 0.0000004 * d = 23.439351 6. Find the Right Ascension (alpha) and Declination (delta) of the Sun Y = cos(epsilon) * sin(lambda) X = cos(lambda) a = arctan(Y/X) If X < 0 then alpha = a + 180 If Y < 0 and X > 0 then alpha = a + 360 else alpha = a Y = 0.6489924 X = -0.7068507 a = -42.556485 alpha = -42.556485 + 180 = 137.44352 (degrees) delta = arcsin(sin(epsilon)*sin(lambda)) = 16.342193 degrees Final result Right ascension is usually given in hours of time, and both figures need to be rounded to a sensible number of decimal places. alpha = 9.163 hrs or 9h 09m 46s delta = +16.34 degrees or +16d 20' 32" The Interactive Computer Ephemeris gives alpha = 9h 09m 45.347s and delta = +16d 20' 30.89"
-----