En poussant les bouchons encore plus loin on pourrait même avoir des théories probabilistes complètes ( au sens de meilleure theorie possible) reflètants l'indéterminisme fondamental de la nature.
-----
En poussant les bouchons encore plus loin on pourrait même avoir des théories probabilistes complètes ( au sens de meilleure theorie possible) reflètants l'indéterminisme fondamental de la nature.
Dernière modification par sunyata ; 15/11/2015 à 22h50.
la question du droit ? et de juger, c'est celui de la raison, qui est innée à l'homme, aimer ou ne pas aimer font partie de nos facultés et le jugement ne se fait qu'a partir des connotations acquise sur chaque chose quant à bénéfactivité ou malignité...Il n'y a pas de connaissance possible du déterminisme ou non de l'univers.
Il faut savoir ce que nos pouvons connaitre avant de commencer à connaitre.
La question à se poser est : quid juris (De quel droit). De quel droit quelqu'un peut affirmer que les phénomènes dans le monde sont régis par la causalité. Cette question est centrale. Avant de produire la moindre thèse sur le déterminisme, il faut se poser la question des conditions de possibilité d'une affirmation. Qu'est ce qui autorise à porter un jugement sur ce qui est.
Perso, je ne crois pas à la mathesis universalis.
le droit, c'est du culturel, et il n'y de droit qu'écrit, c'est donc assez tardif chez l'homme, et comme vos le dites (en latin) "quid juris" le droit romain, et avant lui en remontant au code d'amourabi aux babyloniens au égyptiens ou hittites...
le jugement naturel n'est pas un droit mais un simple fait naturel, c'est l'art soupeser et de comparer les choses à ses propres vue et intérêt. il n'y a de droit dans la nature, la nature s'oppose à la culture, et que le droit est un concept culturel, pas naturel... (l'on parle de fait pour le naturel, ou d'us et de coutume quand il s'agit de culture orale, donc sujette au changement et l'arbitraire du sage, pas du juge, qui justifie sont fait sur le droit et la loi "écrite"...
donc juger, cette faculté de juger nous est innée, la question du "quid juris" est infondée, et surtout injustifiable... nos facultés de représentation du monde nous sont donné, car se sont des nécessité logique, biologique qui parce qu’elles sont performantes ont permis a nos ancêtres de se sortir de mauvais pas, et donc de se reproduire. ceux/celle qui n'en était pas doté ont simplement été éliminé(es).
donc rien ne nous autorise à porter un jugement, hormis la nécessite de comprendre l'état du monde, pour nous adapter, ce n'est pas un rapport de droit, mais un rapport de survie... ne pas savoir si une chose nous est bonne ou mauvaise, c'est tirer les moustaches du lion dans sa cage pendant qu'il dort.. et gare au réveil.
la causalité ici, est une constatation, c'est ainsi que nous nommons tout un ensemble de pattern de liant logique se produisant dans le temps et toujours dans le même sens, soit qu'une conséquence usuelle a une cause n'intervients précisément jamais avant que la cause ne soit survenue... l'adage populaire dirais il n'y a de fumée sans feu, soit que ce n'est pas la fumée la raison de l'existence du feu.
le tout n'est pas un jugement, mais une induction/généralisation a propos de cas usuel si longtemps repetté que l'on ne connait pas de cas inverse, (ou la fumée serait cause du feu)... cette certitude de la conséquentialité du monde permet de replacer les événements dan s le bon ordre, car ce n'est pas parceque l'on perçoit la fumée avant de voir les flammes, que nous allons penser que la fumé est la cause de la présence future de flamme subjectivement parlant.
là aussi, ce n'est pas le droit, qui agit, mais la logique de survie, qui naturelle de connaitre nous contraint à produire une représentation du monde cohérente avec ce que le monde nous donne, sans quoi...
Oui mais cela n'existe pas.
Note: le mot possible est ambigu, il y a plusieurs notions de possible (c'est le logicien qui parle).
Pour en faire un usage rigoureux, il convient donc de préciser ce qu'on entend, dans un contexte précis, par possible.
Exemple de meilleure théorie possible :
Soit un dé.
La meilleure théorie possible quand à l'issue d'un lancer du dé, est de dire que j'ai 1/6 chances d'obtenir un résultat donné.
Il n'y aura pas de meilleure théorie que celle là.
Mieux : Il existe des variables cachées locales, mais on ne peut pas les formaliser dans la théorie.
Cordialement,
Dernière modification par sunyata ; 16/11/2015 à 13h17.
Est ce une théorie ? Je ne le pense pas.Exemple de meilleure théorie possible :
Soit un dé.
La meilleure théorie possible quand à l'issue d'un lancer du dé, est de dire que j'ai 1/6 chances d'obtenir un résultat donné.
Il n'y aura pas de meilleure théorie que celle là.
Mieux : Il existe des variables cachées locales, mais on ne peut pas les formaliser dans la théorie.
Cordialement,
Ce que vous décrivez est une corrélation entre un état initial et un état final, entre les deux, vous mettez une boite noire.
Or, rendons hommage à Poincaré et à tous ses successeurs, il y a quand même la théorie des systèmes dynamiques différentiables qui constitue un schème conceptuel important pour la décodification de nombreux processus dynamiques de façon unifié et dont le lancé de dé fait partie.
Disons que je dirais de vous que vous êtes Humien dans votre approche, tandis que je serais plus Kantien.
bjr,
je suis d'accord, il y a la dedans une simplification/vulgarisation qui induit en erreur.
ce n'est pas l'aile du papillon, mais un enchaînement de faits.
si on l'oublie, on en revient à la simple réduction aux fameuses "conditions initiales" !
bref : cause au singulier ne veut rien dire ( mon sentiment ).
Cdt
Lorsque les images ne sont plus satisfaisantes, il faut passer aux concepts.
Le concept derrière l'effet papillon, c'est un coefficient de Lyapunov strictement positif.
Bonsoir,Est ce une théorie ? Je ne le pense pas.
Ce que vous décrivez est une corrélation entre un état initial et un état final, entre les deux, vous mettez une boite noire.
Or, rendons hommage à Poincaré et à tous ses successeurs, il y a quand même la théorie des systèmes dynamiques différentiables qui constitue un schème conceptuel important pour la décodification de nombreux processus dynamiques de façon unifié et dont le lancé de dé fait partie.
Disons que je dirais de vous que vous êtes Humien dans votre approche, tandis que je serais plus Kantien.
Voulez-vous dire qu'il existe un modèle permettant de prédire un lancer de dé ?
Si ce n'est pas une théorie, en quoi le physique quantique es-elle différente ? Elle prédit bien des probabilités.
Cordialement,
Salut,
Ce que je veux dire, c'est que le lancer de dé qui est imprédictible fait partie d'une famille de modèles dans lesquels certains sont prédictibles comme le mouvement des planètes par exemple. Ainsi la beauté de la découverte de Poincaré est d'avoir pu unifier ces deux types de modèles à priori extrêmement différents, mais qui en fait sont conceptuellement semblables, sauf que dans l'un, il y a un coefficient (de Lyapunov) qui est positif et dans l'autre négatif.
Le prédictible et l'imprédictible ne diffèrent que par d'un signe. - dans l'un, + dans l'autre.
redde caesari quae sunt caesaris
La citation est de Blaise Pascal, ce qui ici prend une saveur particulière, puisque Blaise Pascal fut l'un des premiers à s'intéresser à la notion de probabilité.
Ah je ne savais pas que la citation était de Pascal. Merci.
Aujourd'hui beaucoup de femmes veulent avoir un nez "court", alors qu'à l'époque, c'était plutôt l'inverse.
La phrase est dans Matthieu, 22, 21: De César, lui répondirent-ils. Alors il leur dit: Rendez donc à César ce qui est à César, et à Dieu ce qui est à Dieu.
Pour toute question, il y a une réponse simple, évidente, et fausse.
Merci Amanuensis pour la correction.
Cependant, à la décharge de Schrodies-Cat, je ne serais vraiment pas étonné que Pascal ait cité cette phrase quelque part.
Bon, si Shrodies-Cat veut se faire pardonner son erreur, faudrait qu'il nous dise où se trouve cette citation dans les pensées...
hm, je connais les possible naissant des facultés combinatoire d'un système, comme l'ensemble des partitions naissant de l'existence du piano, ou d'autre instrument de musique, ou encore des textes naissant de l'existence d'un alphabet.
et puis les possibles naissant de la combinatoire de l'ensemble des systèmes existant dans le réel et dont ceux-ci permettent l'existence (sans que cette existentialité soit inéluctable ou prédéfinie par l'existence de ce système, ou de ses systèmes (puisque se développant dans le temps, et que leur survenue aléatoires donc accidentelle, ne sont pas prédéfinie dans le système lui-même)
Je dirai même plus, Pascal était déterminé (puisque c'est le sujet du fil) pour être un grand mathématicien.
Son père refuse qu'il apprenne les maths. A 12 ans, sans jamais avoir suivi un seul cours de math, il retrouve de lui-même les je-ne-sais-combien axiomes d'Euclide, à 16 ans c'est son fameux articles sur les coniques, etc...
Et dire qu'il est mort à 39 ans.
Je sourçais la citation de Noumen de Pascal sur Cléopatre.
http://www.linternaute.com/citation/...blaise-pascal/
Ce faisant, j'avais utilisé la citation attribuée à Jésus pour dire qu'il fallait rendre à Pascal ce qui lui appartient.
Je répondais à Noumen.
Pour toute question, il y a une réponse simple, évidente, et fausse.
oui, cela semblait clair.
mais ou est passé le déterminisme la dedans ?
je vois pas l'intérêt de citer la bible ou les mémoires de cesar, ou je ne sais quoi d'autre.
pour ma petite personne qui aime ce site, ces dérives à répétitions ont tendance à me faire fuir.
très cordialement à tous.
@ansset
Faut pas hésiter à recentrer:
1) Faire une synthèse des éléments de réponse à la question initiale et proposés dans cette discussion ;
2) Indiquer les points restants encore ouverts.
Pour toute question, il y a une réponse simple, évidente, et fausse.
Dernière modification par Amanuensis ; 18/11/2015 à 11h37.
Pour toute question, il y a une réponse simple, évidente, et fausse.
vous n'avez pas tord !
Mais faire la synthèse me semble difficile tellement la discussion est décousue. ( je parle pour ma petite personne ).
indiquer les points encore ouverts est en revanche une bonne piste pour éviter de citer je ne sais qui ( pourquoi pas Titof , Tintin, ou Becassine ... )
je le prend avec respect et humour.
celui qui a écrit cela connait "un peu" certaines de mes prédilections.
ceux qui n'ont pas compris peuvent le prendre "à l'envers" , et tant pis pour eux.
Vous n'êtes pas un peu compliqué ?Je sourçais la citation de Noumen de Pascal sur Cléopatre.
http://www.linternaute.com/citation/...blaise-pascal/
Ce faisant, j'avais utilisé la citation attribuée à Jésus pour dire qu'il fallait rendre à Pascal ce qui lui appartient.
1. Citer une locution latine sans la traduction.
2. Dire qu'elle est de Pascal (qui emploie beaucoup de locutions latines dans ses textes)
3. Alors qu'en fait c'était ma citation.
4. Sachant que 99% de la population française sait qu'elle est de Pascal...
Ouf, ça fait trop pour moi.
pour essayer de se recentrer un peu vers le sujet,Je dirai même plus, Pascal était déterminé (puisque c'est le sujet du fil) pour être un grand mathématicien.
Son père refuse qu'il apprenne les maths. A 12 ans, sans jamais avoir suivi un seul cours de math, il retrouve de lui-même les je-ne-sais-combien axiomes d'Euclide, à 16 ans c'est son fameux articles sur les coniques, etc...
Et dire qu'il est mort à 39 ans.
je suis toujours un peu méfiant sur les explications de type biographiques sur l’œuvre d'un créateur, qui sont toujours des explications a posteriori (excusez la locution latine).Nombre de gamins montrent un gout, voire un talent précoce pour les mathématiques sans pour autant réussir plus tard dans cette discipline.
On ne saurait donc y voir un déterminisme.
Oui, vous avez raison.pour essayer de se recentrer un peu vers le sujet,
je suis toujours un peu méfiant sur les explications de type biographiques sur l’œuvre d'un créateur, qui sont toujours des explications a posteriori (excusez la locution latine).Nombre de gamins montrent un gout, voire un talent précoce pour les mathématiques sans pour autant réussir plus tard dans cette discipline.
On ne saurait donc y voir un déterminisme.
Simplement si vous avez le temps écouter cette conf http://savoirs.ens.fr/expose.php?id=2131
Un pur régal pour peu que vous appréciez Pascal. Ecouter en particulier à partir de 2mn30.
Avec toutes ces citations et ces hors-sujet, nous sommes bien avancés.
Pardon, humilité, humour, hasard, tolérance, partage, curiosité et diversité => liberté et sérénité.