Bonjour,
notre prof nous a donné un problème sur les polynôme et lieu géométrique. je bloque à partir de la 2ème question!
voici l'énoncé:
f est un polynôme défini par f(x)=1/4 x^4-2x²/3
1) Etudier f et tracer sa courbe
2) Utiliser le graphique pour discuter, selon, les valeurs de m, la place des nombres -1 et 2 par rapport aux racines de l'équation (x^4-8x²)/(12-4m)=0
3) Déterminer l'équation de la tangente à la courbe au point d'abscisse 1. Cette tangente recoupe la courbe en deux autres points. Calculez les coordonnées de ces points.
4)a. Ecrivez une équation de la tangente à la courbe au point d'abscisse a.
b. Ecrivez l'équation qui donne les abscisses des points d'intersection de cette tangente avec la courbe.
c. Vérifiez que cette équation peut se mettre sous la forme (x-a)² g(x)=0, où g est un trinôme du second degré que vous déterminerez
d. Déduisez de la question précédente l'ensemble des valeurs de a pour lesquelles la tangente recoupe la courbe.
5. Dans le cas où la tangente au point d'abscisse a recoupe la courbe, on note M' et M'' les deux points ainsi obtenus.
a. Calculez les coordonnées du milieu I de [M'M''] en fonction de a
b. Déterminez l'ensemble des points I lorsque a décrit R.
voilà un problème de fou, ça fait déjà 2 semaines qu'elle nous la donné et 2 semaines où je bloque. Donc je fais appelle à vous en espérant que vous m'aiderez, Merci d'avance!