salut tout le monde
Mon probleme est de trouver tous les de tel que divise
-----
Aujourd'hui
Publicité
05/11/2011, 21h29
#2
God's Breath
Date d'inscription
décembre 2007
Messages
9 645
Re : Trouver n de N
Tout simplement : parmi les entiers de 1 à n,
combien y a-t-il de multiples de 2 ?
combien y a-t-il de multiples de 4 ?
combien y a-t-il de multiples de 8 ?
combien y a-t-il de multiples de 16 ?
...
Quelle est la valeur maximale de k (entier) telle que 2k divise n! ?
Cet entier k peut-il être supérieur à n-1 ?
Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.
05/11/2011, 22h18
#3
cheria2005
Date d'inscription
juin 2007
Âge
41
Messages
10
Re : Trouver n de N
salut BREATH
pour n= 4 ,
alors 4 est solution .
mais pour n=12 ,
donc 12 pas une solution
comment je trouve les solutions?
05/11/2011, 23h05
#4
God's Breath
Date d'inscription
décembre 2007
Messages
9 645
Re : Trouver n de N
Comme je l'ai indiqué : tu comptes soigneusement, en fonction de n, le nombre de multiples de 2, de 4, de 8, de 16, de 32, ... qui apparaissent dans la factorielle pour savoir quelle est la plus grande puissance de 2 que tu peux mettre en facteur.
Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.
Aujourd'hui
A voir en vidéo sur Futura
07/11/2011, 20h41
#5
cheria2005
Date d'inscription
juin 2007
Âge
41
Messages
10
Re : Trouver n de N
salut
que dites -vous de ça :
donc n! est divisible par .
on pose alors :
08/11/2011, 08h12
#6
God's Breath
Date d'inscription
décembre 2007
Messages
9 645
Re : Trouver n de N
Oui, et on peut majorer le second membre de la dernière inégalité.
Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.