Répondre à la discussion
Affichage des résultats 1 à 7 sur 7

Eléments finis



  1. #1
    Deaven

    Eléments finis


    ------

    Bonjour

    Je travaille sur les éléments finis en ce moment et j'ai un petit problème. Pour effectuer une factorisation de Cholesky de ma matrice "degrés de liberté", il faut et il suffit que ma matrice soit symétrique définie positive.

    J'ai trouvé plusieurs définitions sur Wiki mais aucune n'est applicable.

    _1° déf : Les valeurs propres sont toutes positives.
    == Ma matrice étant une 4x4, la diagonalisation me donne un polynôme d'ordre 4 avec aucune racine évidente.... Aucune envie de me farcir les décompositions d'Euler et autres. De plus, le raisonnement doit pouvoir être fait sur un système réel soit 1M degré de liberté.

    2° déf : La matrice doit définir un produit scalaire
    === What iz this shit

    3° déf : Quleque soit le vecteur v : transposé de V x A x V supérieur ou égal à zéro.
    === Je pense que c'est là que je peux trouvé une faille : tout les coef de ma matrice sont positifs : puis-je en conclure que cette hypothése est vérifiée et donc qu'elle est définie positive ?

    Si ce n'est pas ça, il serait très aimable de votre part de me donné vos trucs pour conclure qu'une matrice est déf. pos.

    -----

  2. Publicité
  3. 📣 Nouveau projet éditorial de Futura
    🔥🧠 Le Mag Futura est lancé, découvrez notre 1er magazine papier

    Une belle revue de plus de 200 pages et 4 dossiers scientifiques pour tout comprendre à la science qui fera le futur. Nous avons besoin de vous 🙏 pour nous aider à le lancer...

    👉 Je découvre le projet

    Quatre questions à explorer en 2022 :
    → Quels mystères nous cache encore la Lune 🌙 ?
    → Pourra-t-on bientôt tout guérir grâce aux gènes 👩‍⚕️?
    → Comment nourrir le monde sans le détruire 🌍 ?
    → L’intelligence artificielle peut-elle devenir vraiment intelligente 🤖 ?
  4. #2
    fitzounet

    Re : Eléments finis

    si tu donnes ta matrice je peux peut-être te filer un coup de main

  5. #3
    fitzounet

    Re : Eléments finis

    sinon je peut-être une idée.. tu as ton polynôme caractéristique, et aucune racine évidente..

    Mais tu ne peux pas montrer que les racines de celui-ci sont positives, sans chercher à déterminer leurs valeurs ?

  6. #4
    floch76

    Re : Eléments finis

    Je pense que la troisiéme def est celle que l'on peut le mieux comprendre.
    en effet, pour A(transposé)*V(ou symbole de kronecker)*A doit te doner une matrice positive diagonale egal a 1.

    Elle est la la définition
    En espérant avoir compris ce que tu demandais

    Cordialment

  7. A voir en vidéo sur Futura
  8. #5
    fitzounet

    Re : Eléments finis

    je sais pas... j'ai pas le temps là je vais en cours mais je suis sûr qu'on peut trouver tout un tas de matrices dont les coeffs sont positifs et qui ne vérifient pas pour autant tX*A*X >= 0

  9. #6
    gatsu

    Re : Eléments finis

    Citation Envoyé par Deaven Voir le message
    Bonjour

    Je travaille sur les éléments finis en ce moment et j'ai un petit problème. Pour effectuer une factorisation de Cholesky de ma matrice "degrés de liberté", il faut et il suffit que ma matrice soit symétrique définie positive.

    J'ai trouvé plusieurs définitions sur Wiki mais aucune n'est applicable.

    _1° déf : Les valeurs propres sont toutes positives.
    == Ma matrice étant une 4x4, la diagonalisation me donne un polynôme d'ordre 4 avec aucune racine évidente.... Aucune envie de me farcir les décompositions d'Euler et autres. De plus, le raisonnement doit pouvoir être fait sur un système réel soit 1M degré de liberté.

    2° déf : La matrice doit définir un produit scalaire
    === What iz this shit

    3° déf : Quleque soit le vecteur v : transposé de V x A x V supérieur ou égal à zéro.
    === Je pense que c'est là que je peux trouvé une faille : tout les coef de ma matrice sont positifs : puis-je en conclure que cette hypothése est vérifiée et donc qu'elle est définie positive ?

    Si ce n'est pas ça, il serait très aimable de votre part de me donné vos trucs pour conclure qu'une matrice est déf. pos.
    Salut,

    Si je ne m'abuse la définition 3) est équivalente à la définition 2). Toujours est il que si tu as un produit scalaire (i.e. vérifie def 2) ou 3)) alors il existe forcément une base dans laquelle ta matrice est diagonale de telle sorte que la matrice corresponde à la matrice unité.
    "Au fond..la musique si on la prend note par note c'est assez nul". Geluck

  10. Publicité
  11. #7
    Deaven

    Re : Eléments finis

    Citation Envoyé par fitzounet Voir le message
    je sais pas... j'ai pas le temps là je vais en cours mais je suis sûr qu'on peut trouver tout un tas de matrices dont les coeffs sont positifs et qui ne vérifient pas pour autant tX*A*X >= 0
    Cela m'inquiète beaucoup.....mais effectivement, ça n'a pas l'air d'être le cas.

    Je vais tester de prouver que toutes mes racines sont sup à zéro mais c'est pas évident .

    En tout cas, la réponse a pas l'air d'être trivial, ça me rassure quand à mes capacités vu la bonne heure que j'ai planché là dessus...


    Je vous balance la matrice demain. Ty all

Discussions similaires

  1. elements finis sur MatLab
    Par ABN84 dans le forum Physique
    Réponses: 7
    Dernier message: 18/04/2010, 11h15
  2. Volumes vs Eléments Finis
    Par vin_100 dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 09/01/2010, 12h57
  3. Modélisation: Elements finis P1 en 2D
    Par Newenda dans le forum Mathématiques du supérieur
    Réponses: 0
    Dernier message: 28/01/2009, 11h34
  4. Elèments finis
    Par BrossMario dans le forum Physique
    Réponses: 3
    Dernier message: 07/12/2008, 18h26
  5. elements finis
    Par ABN84 dans le forum Mathématiques du supérieur
    Réponses: 0
    Dernier message: 17/03/2007, 22h46