réflexion d'une onde sur une paroi ondulée
Répondre à la discussion
Affichage des résultats 1 à 28 sur 28

réflexion d'une onde sur une paroi ondulée



  1. #1
    invite29104ecc

    réflexion d'une onde sur une paroi ondulée


    ------

    Bonjour,
    Quelqu'un pourrait il m'expliquer pourquoi les surfaces ondulées sont plus efficaces que les surfaces planes dans l'atténuation des ondes, notamment des ondes aquatiques...
    Un grand merci d'avance!

    -----

  2. #2
    invite6dffde4c

    Re : réflexion d'une onde sur une paroi ondulée

    Bonjour.
    Une surface ondulée n'atténue pas les ondes.
    Mais la réflexion de ces ondes se fait dans toutes les directions au lieu d'une réflexion spéculaire dans une direction unique.
    Au revoir.

  3. #3
    invite29104ecc

    Re : réflexion d'une onde sur une paroi ondulée

    Merci de cette info...
    Mais dans la réalité (dans mon cas je m'intéresse au petites vagues de surface ou sous-marines, la paroi étant en plastique, par exemple), peut on considérer que l'onde ne se réfléchit pas parfaitement, une partie étant absorbée par l'obstacle?


    Sinon, n'ayant trouvé que très peu d'infos sur le cas des vagues, j'essaie de raisonner par analogie avec les ondes sonores, ou encore les ondes sismiques.Pour ces dernières,on considère que la surface engendre une onde réfléchie sur un plan horizontal z=0 selon la loi de Snell plus une onde diffusée par les ondulations (source http://JMM @ EOSTondes sismiques.mht)...

    En sauriez vous d'avantage sur cette idée?

    Merci d'avance!

  4. #4
    invite6dffde4c

    Re : réflexion d'une onde sur une paroi ondulée

    Bonjour.
    Ce serait plus clair si vous décriviez plus précisément de quelles vagues ou ondes il s'agit et quelle est la géométrie que vous avez.
    Quand une onde ou une vague arrive à une interface, une partie est réfléchie et une autre partie est transmisse. Mais, à priori, il n'y a pas d'absorption. Pour qu'il ait absorption il faut que d'autres processus entrent en jeu.

    Votre lien ne fonctionne pas.
    Au revoir.

  5. A voir en vidéo sur Futura
  6. #5
    invite29104ecc

    Re : réflexion d'une onde sur une paroi ondulée

    Bonjour,
    Désolé pour le lien; je retente: http://arnica.u-strasbg.fr/~jmm/Sismique/osis.html

    Autrement, les vagues que j'étudie sont de faibles amplitudes: initialement ma recherche se focalisait sur les détecteurs de chutes dans les piscines (sonde immergée qui détecte les signaux générés par une chute). Le problème manifeste est la "désinformation" dues aux petites vagues crées par le vent ou les pluies...
    Du coup, les concepteurs ont prévu ce fameux obstacle, destiné à protéger la sonde des petites pertubations...
    Or, il apparaît que la forme de l'obstacle joue sur son efficacité, en particulier la forme ondulée... Voilà ce que je cherche à comprendre...

    En ce qui concerne l'absorption, on ne peut s'y réferer que dans le cas d'ondes electromagnétiques?

    Merci de votre aide!

  7. #6
    invite29104ecc

    Re : réflexion d'une onde sur une paroi ondulée

    j'ai oublié de préciser pour le lien que l'info que j'y ai retenue est en fin de page...

  8. #7
    invite6dffde4c

    Re : réflexion d'une onde sur une paroi ondulée

    Bonjour.
    Un "splatch" sur l'eau produit des vagues à la surface, du son dans l'air et dans l'eau plus un remous dans l'eau. La première chose à faire serait de savoir ce que détecte le dispositif.

    Pour ce qui est de l'analogue avec les ondes électromagnétiques, oui, on peut le faire. Mais l'absorption de ces ondes ne provient pas plus de la réflexion ou de la transmission à la frontière entre deux milieux. Il fait intervenir d'autres processus.

    Le lien que vous avez donné est très bien comme aide mémoire pour ceux qui ont bien compris les phénomènes. Ce n'est qu'un formulaire et non une source d'explication ou de compréhension.
    Au revoir.

  9. #8
    invite29104ecc

    Re : réflexion d'une onde sur une paroi ondulée

    Bonjour,
    La sonde mesure la pression crée par les vagues, qui sera ensuite traitée via un capteur de pression puis une unité électronique...
    L'intérêt de cet obstacle est donc de préserver au maximum la zone entourant la sonde, des petits remous dus au vent (par exemple...).

    Ci-joint un fichier décrivant précisément le système, les quelques schémas suffisant à saisir l'essentiel!

    Ce que je ne comprends pas, c'est pourquoi l'obstacle ondulé (ou à cannelures) est plus efficace qu'un simple obstacle plat...L'influence de la paroi est elle réellement importante où très peu?

    Merci,
    au revoir
    Images attachées Images attachées

  10. #9
    invite6dffde4c

    Re : réflexion d'une onde sur une paroi ondulée

    Re.
    J'ai finalement pu lire le document. Je me suis arrêté à la page 5 en considérant que j'avais assez lu de conneries.
    Ça commence par les "vagues sous-marines". En fait, l'appareil détecte les changements de pression, au petit bonheur, produits par les vagues de surface.
    Mais les vagues de surface ne produisent des changements de pression qu'à des profondeurs plus faibles que la longueur d'onde des vagues. Pour des profondeurs plus importantes il y a un effet de second ordre mais évidement négligeable dans ce cas.
    Quand au "dispositif" créant un obstacle entre les vagues de surface et l'entrée de la sonde, c'est tout simplement bidon.

    Je ne sais pas ce que vous devez faire avec cet objet, mais en tout cas, oubliez les réflexions, absorptions, interférences, etc. C'est du baratin qui n'a rien à voir avec le fonctionnement de l'appareil.

    Et le texte du brevet, c'est une honte. Je comprends le SGDG "sans garantie du gouvernement" qui figure obligatoirement dans les mentions du brevet.
    A+

  11. #10
    invite29104ecc

    Re : réflexion d'une onde sur une paroi ondulée

    "..."!!!

    Ce document ne vaut donc rien???

    Tant pis je vais oublier cet attrappe touriste tout en continuant à 'intéresser à l'avantage des parois ondulées dans le cas général...

  12. #11
    invite29104ecc

    Re : réflexion d'une onde sur une paroi ondulée

    Bonjour,

    Si désormais on considère, en oubliant cette "fameuse" sonde, une surface libre ondulée sinusoïdalement, dans l'eau, et qu'on "projette" dessus un faisceau d'ondes planes (acoustiques dans un premier temps) unidirectionnel, peut-on prévoir ce qui va se produire à l'interface eau-paroi?

    Je pense que cela va dépendre du matériau composant la paroi, mais peut-on généraliser le phénomène?

    Au revoir

  13. #12
    invite6dffde4c

    Re : réflexion d'une onde sur une paroi ondulée

    Bonjour.
    La réflexion des ondes dans une interface est donnée par les caractéristiques des deux milieux.
    Les amplitudes des ondes transmise et réfléchie est donnée par les règles de conservation (électromagnétiques ou mécaniques) à l'interface.
    Les amplitudes données par ces formules fonctionnent au niveau "local" (petite zone près de la surface). Si l'incidence est normale et la surface plane, c'est simple. Si l'incidence n'est pas normale, in faut introduire l'angle d'incidence. Ce n'est pas dur, mais les formules se compliquent.
    Mais si les surfaces ne sont pas planes, il faut calculer l'amplitude et la phase de l'onde à chaque point de la surface, puis faire la somme (intégrale) de toutes ces petites ondes réfléchies (en tenant compte du déphasage) pour chaque direction de réflexion, ou pire, pour chaque point où on veut calculer l'amplitude résultante.
    Donc, comme vous voyez, pour faire le calcul dans le cas général il faut être très motivé.
    Au revoir.

  14. #13
    calculair

    Re : réflexion d'une onde sur une paroi ondulée

    bonjour,

    Ton affaire de surface ondulée en accoustique me fait penser à la surface d'un reseau en optique.

    La rencontre des ondes ( notamment de frequences differentes) avec ce type de surface se fera sans doute avec une dispersion frequencielle

  15. #14
    invite29104ecc

    Re : réflexion d'une onde sur une paroi ondulée

    Ton affaire de surface ondulée en accoustique me fait penser à la surface d'un reseau en optique
    C'est ce que m'a indiqué mon prof de physique, mais je n'ai pas trop saisit le lien...
    Dans un réseau, la "transmittance" vaut 0 ou 1, selon que le rayon incident passe par une fente ou non. Il y a sans doute une équivalence avec une surface ondulée, mais je comprends pas trop!

    Pour ce qui est des calculs, je n'ai pas la prétention de résoudre mon "énigme" avec, ça me paraît assez compliqué...

    Du reste, logiquement, ces derniers devraient prouver l'avantage de la surface ondulée comme "isolante", non?

    Ou alors cet avantage de l'ondulation est très faible, ou négligeable et dans ce cas il ne sert à rien de trop s'y attarder?

    Voilà qui m'embarasse un peu!

    Enfin, merci de votre aide!

  16. #15
    invite6dffde4c

    Re : réflexion d'une onde sur une paroi ondulée

    Re.
    Oui, cela rappelle les réseaux de diffraction.
    Mais il y a des nuances suivant la longueur d'onde de l'onde et celle de la tôle ondulée. Par exemple, si la longueur d'onde de la tôle ondulée est très petite comparée à celle l'onde, cette dernière ne "voit" pratiquement pas les ondulations de la tôle. Elle la "voit" comme si elle était lisse.
    À l'autre extrémité, si la longueur d'onde est petite devant la longueur d'onde de la tôle, cette dernière se comporte comme un miroir déformant. La diffraction ne joue pratiquement pas.

    Et dans un réseau, le cas de transmittance 0 ou 1 est un cas extrême qui simplifie les calculs et qui suffit pour comprendre ce qui se passe... même si la transmittance n'est pas 0 ou 1.
    Mais le cas 0/1 est une exception. Les cas les plus courants sont avec des valeurs intermédiaires (les CD sont presque un cas 0/1).
    C'est le cas, en particulier, des réseaux optiques "répliques" en collodion, qui sont totalement transparents (1 et 1) mais dont l'épaisseur forme un réseau. Toute la lumière passe, mais par endroits sa phase est décalée.

    La morale de cette histoire est que, au lieu d'étudier le cas général, il faut étudier le cas qui compte suivant les longueurs d'onde, la nature des ondes et la nature de l'interface.

    Au fait,... c'est quoi votre problème précis?

    A+

  17. #16
    calculair

    Re : réflexion d'une onde sur une paroi ondulée

    bonjour

    De memoire:

    Soit un rayon reflechit = A eJwt
    un 2° rayon reflechit dephasé de s radian ( incidence oblique sur la surface avec des zones reflechissantes et d'autres non , le 0 et 1 de LPFR )
    Si la surface est periodique ( type tole ondulée ) les rayons reflechis ont pour dephasage 0 , S , 2S, 3S ...nS...

    En notation complexe tu as

    R = A eJwt( 1+ eJs + eJ2S+ ... + eJNs)


    Le terme entre parenthèse est une serie geometrique de 1° terme 1 = e et de dernier terme eJNs et de raison eJs

    Je te laisse calculer cette somme ( forme d'arithmètique ) et evidemment la phase S depend des dimensions de la periodicité de la tole ( distance entre les ondulations et de la longeur d'onde ), encore faut il creer les conditions pour que toutes ces ondes interferent...
    Dernière modification par calculair ; 28/05/2009 à 12h46.

  18. #17
    calculair

    Re : réflexion d'une onde sur une paroi ondulée

    Citation Envoyé par calculair Voir le message
    bonjour

    De memoire:

    Soit un rayon reflechit = A eJwt
    un 2° rayon reflechit dephasé de s radian ( incidence oblique sur la surface avec des zones reflechissantes et d'autres non , le 0 et 1 de LPFR )
    Si la surface est periodique ( type tole ondulée ) les rayons reflechis ont pour dephasage 0 , S , 2S, 3S ...nS...

    En notation complexe tu as

    R = A eJwt( 1+ eJs + eJ2S+ ... + eJNs)


    Le terme entre parenthèse est une serie geometrique de 1° terme 1 = e et de dernier terme eJNs et de raison eJs

    Je te laisse calculer cette somme ( forme d'arithmètique ) et evidemment la phase S depend des dimensions de la periodicité de la tole ( distance entre les ondulations et de la longeur d'onde ), encore faut il creer les conditions pour que toutes ces ondes interferent...
    Noter que 1 est e puissance 0

  19. #18
    invite29104ecc

    Re : réflexion d'une onde sur une paroi ondulée

    Alors...

    Pour répondre à LPFR, je suis en maths spé et il s'agit de mon sujet de TIPE...
    Les détecteurs de chute que j'étudie sont assez controversés, certains types ont été retirés de la vente pour manque de fiabilité.
    Celui auquel je me suis donc intéressé fonctionne (type aquasensor solar) et j'ai essayé d'en savoir plus,en me focalisant sur la détection même des perturbations. Après pas mal de recherches je suis tombé sur cette fameuse notice postée un peu plus haut qui évoque l'emploi d'une paroi...
    Mon problème initial était d'expliquer pourquoi une paroi ondulée est plus efficace qu'une paroi plane. J'ai d'ailleurs tenté une expérience à l'aide d'une cuve à onde et 'une succession de miroirs concave-convexe... Pas très concluant!

    En ce qui concerne les calculs de caculair, le calcul de l'éclairement des réseaux de diffraction est au programme, et on fait exactement comme ça...(on obtient à la fin un rapport de 2 sinus fois une exponentielle...)
    seulement, ce calcul est seulement valable pour un faisceau incident de rayons parallèles entre eux... Je peux éventuellement me limiter à ce cas, et je comprends alors le lien entre réseau et paroi ondulée.

    Mais ce calcul ne concerne que la lumière, onde electromagnétique...

    Dans mon cas, même si, par la force des choses, je vais peut-être devoir la modifier, ma "problématique" était our isoler un milieu aquatique de petites perturbations modélisées par des ondes mécaniques, pourquoi une surface ondulée est-elle plus efficace?

    Je sais que c'est assez vague (sans jeu de mot!) puisque je n'arrive même pas , par exemple, à savoir si ces ondes mécaniques sont longitudinales ou transversales...

  20. #19
    calculair

    Re : réflexion d'une onde sur une paroi ondulée

    Bonjour,

    Une onde accoustique ou une onde electromagnetique se represente par

    Onde = A sin (wt + S)

    Une onde plane = rayons parallèles

    Ta tole ondulée tu peux dans une première approximation la representer par une surface en dents de scie.

    Quand tu auras bien compris comment elle se comporte ( reseau dit de blaze ) tu pourras tenter un calcul avec une surface sinusoidale. Peut êtree il faudra utiliser un ordinateur pour pour sommer les rayons.

    Tu sais il ya beaucoup de formule en physique qui se resemblent, c'est le domaine des analogies pour parfois mieux s'imaginer les phenomènes

    Devinne ce que c'est F = m a , le principe fondamental de la dynamique ?.....
    et bien on pouvait à penser à
    F = tension
    m = resistance
    a = le courant perdu c'est la loi d'ohm!

    Je t'invite à regarder ton cours d'optique, peut être il t'inspirera aussi ...

    A 1000 m/s et à 10 000 Hz la longueur d'onde est 10 cm

  21. #20
    invite6dffde4c

    Re : réflexion d'une onde sur une paroi ondulée

    Bonjour.
    Les vagues à la surface de l'eau sont et longitudinales et transversales. L'eau suit un mouvement circulaire sur un plan vertical parallèle à la direction de propagation.
    Mais il n'y a pas de vagues sous-marines. C'est une connerie de la doc. Il y a du mouvement d'eau qui correspond au mouvement en surface. Des cercles de plus en plus petits mais qui sont négligeables à une profondeur d'un 6ème de la longueur d'onde de vagues.
    Un obstacle plan (ou ondulé) peut gêner le mouvement de l'eau, mais il est inapproprié de dire qu'il réfléchit des ondes. Et je ne crois pas qu'une surface ondulée soit plus efficace pour gêner le mouvement de l'eau. Et en tout cas il ne s'agit pas d'interférences.
    Au revoir.

  22. #21
    calculair

    Re : réflexion d'une onde sur une paroi ondulée

    Bonjour LPFR et Kenvz

    Je pensais aux ondes accoustiques se propageant dans l'eau

    Pour ce qui concerne les ebranlements de surface ou vague, sa doit marcher aussi. Les longueurs d'ondes sont differentes mais les lois mathematiques des sinus qui les representent restent valables.

  23. #22
    invite6dffde4c

    Re : réflexion d'une onde sur une paroi ondulée

    Citation Envoyé par calculair Voir le message
    Bonjour LPFR et Kenvz

    Je pensais aux ondes accoustiques se propageant dans l'eau

    Pour ce qui concerne les ebranlements de surface ou vague, sa doit marcher aussi. Les longueurs d'ondes sont differentes mais les lois mathematiques des sinus qui les representent restent valables.
    Bonjour Calculair.
    Bien sûr que dans l'eau on peut avoir des ondes sonores. Mais ce ne sont pas des ondes sonores dont l'on parle. Mais des vagues de surface avec des fréquences de l'ordre du hertz et qui donneraient des longueurs d'onde dans le 1,5 km pour des ondes sonores. On peut difficilement faire de la diffraction avec ces ondes dans une piscine, même olympique.
    Cordialement,

  24. #23
    invite29104ecc

    Re : réflexion d'une onde sur une paroi ondulée

    En clair,

    1/ l'influence de la forme de la paroi ne joue pas énormément, du moins dans le cas des vagues de surface dans une piscine, dont la longueur d'onde est bien trop grande...

    2/ en revanche, une paroi ondulée peut s'avérer plus utile dans le cas d'ondes sonores; pour savoir ce qui se passe, je vais donc commencer par m'intéresser au profil dents de scie avant de me lancer dans le cas des parois sinusoïdales. Pour ce qui est des calculs, auiez vous une idée de logiciels que je peux utiliser (maple conviendrait?).

    Merci, bonne soirée!

  25. #24
    invite29104ecc

    Re : réflexion d'une onde sur une paroi ondulée

    Bonjour,
    j'ai regardé ce qu'est un réseau de blaze...
    On reste dans le cas de la lumière, pas des ondes acoustiques...

  26. #25
    invite6dffde4c

    Re : réflexion d'une onde sur une paroi ondulée

    Citation Envoyé par kenvz Voir le message
    Bonjour,
    j'ai regardé ce qu'est un réseau de blaze...
    On reste dans le cas de la lumière, pas des ondes acoustiques...
    Bonjour.
    C'est quoi, un réseau de blaze?
    Je ne l'ai pas trouve sur Google. Même pas en anglais.
    Merci.
    Au revoir.

  27. #26
    calculair

    Re : réflexion d'une onde sur une paroi ondulée

    Citation Envoyé par LPFR Voir le message
    Bonjour.
    C'est quoi, un réseau de blaze?
    Je ne l'ai pas trouve sur Google. Même pas en anglais.
    Merci.
    Au revoir.
    Bonjour LPFR

    C'est un vieux souvenir des cours d'optique.

    C'est un reseau qui est constitué par une surface en dent de scie. Les "dents" sont des triangles rectangles,tous orientés de la même façon evidemment.

    Tu comprends qu'il y a un maximum de lumière autour de la direction de reflexion ( angle d'incidence = angle de reflexion ) imposée par la diirection aux normales des hypothenuses des dents de scie de la surface.

    On obtrient donc des spectres trés lumineux autour de cette direction de " blaze " bien sur !

    Excuses moi de pas avoir fait de dessin, mais j'espère que ma redaction sera suffisament precise.

    Si problème je ferais un effort....

    bien cordialement

  28. #27
    invite6dffde4c

    Re : réflexion d'une onde sur une paroi ondulée

    Bonjour Calculair.
    Je vois de bien le réseau. Je ne le connaissais pas sur ce nom (ni sur un autre).
    Merci.
    Cordialement,

  29. #28
    invite29104ecc

    Re : réflexion d'une onde sur une paroi ondulée

    Bonsoir LPFR et calculair,

    après réflexion, mon TIPE commence à s'enliser du fait de ce document qui m'avait servi de base et qui pourtant ne vaut pas grand chose...votre aide m'aura au moins permis de comprendre que dans le cas d'une piscine, la paroi ondulée ne présente aucun avantage puisque son influence sur les vagues de surface n'a rien d'extraordinaire.
    Aussi je vais laisser le sujet de côté, pour me réorienter vers un autre détecteur de chute, celui utile aux personnes âgées. Je vais me focaliser sur la méthode de mesure des chutes, qui met en jeu (pour certains appareils) un accéléromètre capacitif...Plus beaucoup de rapport avec la présente discussion!

    Il n'est pas impossible que je réouvre un autre sujet concernant ce nouvel intérêt.

    En tout cas un grand merci pour votre aide!

    Cordialement.

Discussions similaires

  1. Force d'un fluide sur une paroi plane
    Par invitefabcc37c dans le forum Physique
    Réponses: 4
    Dernier message: 18/11/2008, 09h27
  2. Rigidité d'une plaque ondulée dans deux dimensions
    Par invite86d55b69 dans le forum Physique
    Réponses: 0
    Dernier message: 02/07/2008, 16h39
  3. Réponses: 3
    Dernier message: 23/11/2007, 13h46
  4. Réponses: 3
    Dernier message: 25/09/2005, 20h11