bonsoir,
j'ai un petit probleme avec un exo de mecanique, et je ne suis pas sur d'avoir la bonne reponse. on peut le resoudre grace aux energies, Em = Ec + Ep, et le theoreme de l'energie cinetique, mais je cherche a le faire grace au principe fondamental de dynamique.
on considere une bille assimilé a un point, qui se deplace sans frottements, ni fluide ni solide.
la premiere portion du mouvement est une ligne droite, puis la bille passe dans un demi-cercle en partant du bas, donc une sorte de demi looping.
elle atteint le point de la base du looping avec une vitesse Vo.
le rayon est R et la masse M.
on veut determiner jusqu'a quel angle la bille va pouvoir aller avant de se décoller du looping et de retomber.
on exprime donc l'acceleration en coordonnées cylindrique (ou plutot polaire car z=0)
puis le poids en projections sur Ur et U(theta), et la reaction du support (selon Ur)
ensuite, on utilise le principe fondamental de dynamique en projection sur Ur et U(theta), et en remplacant (theta point(dérivé une fois) ) d'une equation dans l'autre, puis en admetant que la reaction du support est nulle (puisque la bille retombe du looping), je trouve:
cos(theta) = 2/3 - Vo^2/(3*g*R)
je ne suis pas trop sur du resultat, mais cela signifie que theta va etre l'angle maximal que va parcourir la bille avant de retomber?
et que signifirait ce resultat dans le cas ou theta < 90°?
vu que pour trouver cette equation on suppose qu'a un moment la bille decole, et donc que la reaction du support est nulle, et donc que theta est forcement supperieur a 90°, mais si on trouve theta < 90°, la reaction du support n'est pas nulle... ?.?.?.?
merci de m'eclairer sur le sujet, et si vous ne comprenez pas l'enoncer, j'esserait de faire un joli dessin.
-----