Bonjour, cliquez-ici pour vous inscrire et participer au forum.
  • Login:



+ Répondre à la discussion
Page 1 sur 2 1 DernièreDernière
Affichage des résultats 1 à 15 sur 17

racine de -1

  1. kaito-kun

    Date d'inscription
    mars 2010
    Messages
    2

    racine de -1

    cé koi la racine de -1

    -----

     


    • Publicité



  2. Seirios

    Date d'inscription
    mai 2005
    Localisation
    Dans le plan complexe
    Âge
    26
    Messages
    10 440

    Re : racine de -1

    Bonjour,

    La racine de -1 n'existe pas, dans le sens où lorsque l'on parle de la racine d'un nombre, on se place implicitement sur . Après, si l'on se place sur , alors il existe deux racines carrés de -1, i et -i où i est le nombre imaginaire pure, qui est défini par .
    If your method does not solve the problem, change the problem.
     

  3. benjibul

    Date d'inscription
    novembre 2007
    Âge
    30
    Messages
    71

    Re : racine de -1

    Bonjour,

    Tout a fait d'accord avec Phys2, juste une tite remarque, ne parle tu pas plutot de R+ et non de R?

    A+
     

  4. Seirios

    Date d'inscription
    mai 2005
    Localisation
    Dans le plan complexe
    Âge
    26
    Messages
    10 440

    Re : racine de -1

    Non, je voulais bien dire : ce que je voulais dire, c'est que sur , on définit la racine carré de a>0 par la solution positive de l'équation .
    If your method does not solve the problem, change the problem.
     

  5. bigmomo999

    Date d'inscription
    avril 2009
    Âge
    29
    Messages
    69

    Re : racine de -1

    Citation Envoyé par benjibul Voir le message
    Bonjour,

    Tout a fait d'accord avec Phys2, juste une tite remarque, ne parle tu pas plutot de R+ et non de R?

    A+
    En effet, la racine carré d'un nombre n'est valable que sur R+ (enfin c'est le nombre en question qui doit être défini sur R+)

    Une racine n'est jamais négative ... sauf dans le domaine des Complexe.
     


    • Publicité



  6. invite765732342432
    Invité

    Re : racine de -1

    Citation Envoyé par bigmomo999 Voir le message
    Une racine n'est jamais négative ... sauf dans le domaine des Complexe.
    Es-tu sur que le terme "négatif" ait un sens dans C ?
     

  7. bigmomo999

    Date d'inscription
    avril 2009
    Âge
    29
    Messages
    69

    Re : racine de -1

    Bah je sais pas trop en faite ... peut être une erreur de jugement ... il est vrai qu'en parlant de complexe on entend très peu le terme "négatif", mais pourquoi n'aurait il pas de sens ?

    i² = -1 (-1 étant un nombre négatif ... utilisé dans les complexes ...)

    D'ailleurs les opérations restent les mêmes, et ce dans n'importe quel domaine.
     

  8. Rhodes77

    Date d'inscription
    janvier 2010
    Localisation
    77
    Âge
    32
    Messages
    987

    Re : racine de -1

    Citation Envoyé par bigmomo999 Voir le message
    En effet, la racine carré d'un nombre n'est valable que sur R+ (enfin c'est le nombre en question qui doit être défini sur R+)

    Une racine n'est jamais négative ... sauf dans le domaine des Complexe.

    Ou plutôt "l'argument d'une racine n'est jamais négatif" car racine de 4, c'est 2 ou -2. Cette proposition n'est juste que dans le corps des réels. Ce qui revient à rien d'autre que de déterminer l'ensemble de définition de la fonction racine.
    Notons qu'en gardant les solutions positive et négative de la racine dans sa courbe représentative, on a bien opéré une symétrie de la parabole par rapport à la première bissectrice, ce qui est conforme à la proposition "la fonction carrée est la fonction réciproque de la racine".
    Notons quand même que dans ce cas, un même antécédent admet deux images.
    A mon sens, "la" racine carrée de 9 n'existe pas, elles sont deux 3 et -3. Mais j'ai bien dit "à mon sens". La définition de la fonction impose-t-elle de ne garder que la solution positive ?
    Etre professionnel ne donne pas le droit d'être pédant
     

  9. bigmomo999

    Date d'inscription
    avril 2009
    Âge
    29
    Messages
    69

    Re : racine de -1

    C'est bien ce que j'ai dit, sans employer le terme argument:
    je "me" cite: "la racine carré d'un nombre doit être défini sur R+ (enfin, c'est le nombre en question qui doit être défini sur R+)"
    Lire dans la parenthèse
    Je parlais bien du nombre à l'intérieur de la racine (par nombre j'entend aussi le résultat d'une éventuelle opération)

    pour les deux solutions, racine de 4 = 2 ou -2

    Prenons le ainsi racine de 4 = racine de (2i² x 2i²) = 2i² = -2
    Dernière modification par bigmomo999 ; 03/03/2010 à 11h33.
     

  10. Paminode

    Date d'inscription
    mai 2009
    Messages
    2 672

    Re : racine de -1

    Citation Envoyé par Rhodes77 Voir le message
    racine de 4, c'est 2 ou -2.
    (...)
    A mon sens, "la" racine carrée de 9 n'existe pas, elles sont deux 3 et -3. Mais j'ai bien dit "à mon sens". La définition de la fonction impose-t-elle de ne garder que la solution positive ?
    Bonjour,

    Un de mes anciens profs disait que, dans R, il fallait distinguer deux questions :
    - calculer la racine d'un nombre a
    - calculer les racines de l'équation : x2 = a
    Dans les deux cas, on doit avoir a R+
    Mais en outre, dans le premier cas, on a également R+
    Ainsi = +2 > 0
    Et dans le deuxième cas :
    x2 = a x = +/-
    Donc x2 = 4 x = +/- = +/- (+2) = +/- 2

    Paminode
     

  11. Paminode

    Date d'inscription
    mai 2009
    Messages
    2 672

    Re : racine de -1

    Cela peut encore s'écrire autrement :
    = !a!
    Donc
    x2 = a2 x = +/- !a!

    Paminode
     

  12. Rhodes77

    Date d'inscription
    janvier 2010
    Localisation
    77
    Âge
    32
    Messages
    987

    Re : racine de -1

    Citation Envoyé par Paminode Voir le message
    Cela peut encore s'écrire autrement :
    = !a!
    Donc
    x2 = a2 x = +/- !a!

    Paminode

    Ok ! Ceci étant dit, on ne se pose plus de question
    Merci pour la précision !
    Etre professionnel ne donne pas le droit d'être pédant
     

  13. sebsheep

    Date d'inscription
    juin 2006
    Âge
    31
    Messages
    489

    Re : racine de -1

    Citation Envoyé par bigmomo999 Voir le message
    Bah je sais pas trop en faite ... peut être une erreur de jugement ... il est vrai qu'en parlant de complexe on entend très peu le terme "négatif", mais pourquoi n'aurait il pas de sens ?

    i² = -1 (-1 étant un nombre négatif ... utilisé dans les complexes ...)

    D'ailleurs les opérations restent les mêmes, et ce dans n'importe quel domaine.
    Non, ça n'a que très peu de sens de parler de positif/négatif dans les complexes ...

    En particulier, i est il positif ou négatif ?
    Supposons qu'il est positif, on a alors i>0.
    En multipliant par i (qui est positif, donc on ne change pas les sens de l'inégalité) : i² >0 ; or i² =-1 qui est clairement négatif. Donc i ne peut pas être positif.

    Supposons alors qu'il est négatif, on a alors i<0.
    En multipliant par i (qui cette fois est négatif, donc le signe change) : i²>0. De même que plus haut, i ne peut pas être négatif.

    Dans les 2 cas, on arrive à une absurdité : i n'est ni positif ni négatif, il est complexe ! Et c'est le cas de tous les nombres complexes ! De façon générale, tu ne peux pas comparer 2 complexes entre eux de façon "intelligente".
     

  14. Seirios

    Date d'inscription
    mai 2005
    Localisation
    Dans le plan complexe
    Âge
    26
    Messages
    10 440

    Re : racine de -1

    n'est pas un corps totalement ordonné, mais cela ne nous empêche pas de définir un ordre total sur (même si je ne pense pas que cela ait un grand intérêt...)
    If your method does not solve the problem, change the problem.
     

  15. sebsheep

    Date d'inscription
    juin 2006
    Âge
    31
    Messages
    489

    Re : racine de -1

    Citation Envoyé par Phys2 Voir le message
    n'est pas un corps totalement ordonné, mais cela ne nous empêche pas de définir un ordre total sur (même si je ne pense pas que cela ait un grand intérêt...)
    Effectivement, tu peux mettre un ordre total : tu compares déjà les modules de tes deux complexes, puis leur argument (en prenant les mesures principales bien sûr) si les modules sont égaux .... mais comme tu dis, pas grand intérêt car avec cette relation, on a -1>1, c'est moche !

    D'où le "de façon intelligente".
     


    • Publicité







Sur le même thème :


    301 Moved Permanently

    301 Moved Permanently


    nginx/1.2.1



 

Discussions similaires

  1. Racine de i
    Par physiqueper4 dans le forum Mathématiques du supérieur
    Réponses: 8
    Dernier message: 21/07/2015, 14h55
  2. Ecrire racine de 3 en fonction de racine de 2
    Par Witten dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 17/09/2008, 02h59
  3. Mathématiques 2nde : irrationnalité de racine(2), racine(3)
    Par nitr0-furi0uss dans le forum Mathématiques du collège et du lycée
    Réponses: 16
    Dernier message: 13/09/2007, 19h37
  4. la racine 2
    Par christele.lopez098 dans le forum Mathématiques du collège et du lycée
    Réponses: 2
    Dernier message: 31/03/2007, 12h52
  5. racine(2) + racine(3) algébrique ?
    Par Maquessime dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 09/12/2006, 18h56