Bonjour, cliquez-ici pour vous inscrire et participer au forum.
  • Login:



+ Répondre à la discussion
Page 1 sur 4 12 3 DernièreDernière
Affichage des résultats 1 à 15 sur 51

FAQ: Questions souvent posées en mathématiques

  1. martini_bird

    Date d'inscription
    octobre 2004
    Localisation
    Paris
    Âge
    36
    Messages
    6 910

    FAQ: Questions souvent posées en mathématiques

    Bonjour,

    ce fil propose d'apporter quelques éléments de réponses à des questions souvent abordées dans cette rubrique. Il est bien sûr amené à évoluer et à être complété. Vos contributions seront donc les bienvenues.

    Sommaire
    • #2 & #4 : Pourquoi 0,999...=1 ?
    • #3 : Peut-on toujours calculer une intégrale?
    • #5 : Que signifie le "dx" dans une intégrale ?
    • #6 : Démonstration de la formule du volume d'une sphère

    -----

    Dernière modification par martini_bird ; 30/01/2007 à 23h04.
     


    • Publicité



  2. martini_bird

    Date d'inscription
    octobre 2004
    Localisation
    Paris
    Âge
    36
    Messages
    6 910

    Re : FAQ: Questions souvent posées en mathématiques

    Pourquoi 0,999...=1 ?

    La première chose à faire est de donner du sens à l'expression 0,999... Nous savons que la représentation décimale d'un nombre est une écriture positionnelle additive. Par exemple

    Ainsi on aurait


    Mais comment peut-on additionner une infinité de termes ? Pour celà, nous avons besoin des concepts fondamentaux que sont les suites et leurs limites. Une suite numérique est simplement une collection numérotée de nombres


    Pour notre exemple la suite à étudier sera :



    Venons à la notion de limite et considérons à titre d'exemple la suite


    De toute évidence les termes de sont de plus en plus petits, c'est-à-dire qu'ils se rapprochent de 0 à mesure que le rang augmente : la suite est ainsi dite convergente de limite 0. On note :


    La notion de limite permet ainsi de s'intéresser au comportement au voisinage de l'infini : on approche l'infini par le fini et c'est le seul moyen.

    Revenons à notre suite : par définition on aura donc


    Voyons comment calculer cette limite en formant la différence :



    On obtient donc :


    Or d'une part



    et d'autre part la suite



    converge vers 0, si bien qu'en passant à la limite l'égalité (2) on obtient :



    soit


    En combinant les égalités (1) et (3), on a donc bien démontré que 0,999...=1.


    Quelques discussions en rapport avec le sujet :
    Remarques

    - Les suites mentionnées ci-dessus sont des cas particuliers de (sommes partielles de) suites géométriques, étudiées au lycée.

    - La plupart des suites ne sont pas convergentes : , , , etc.

    - La définition rigoureuse de la limite d'une suite dans le cadre d'un espace métrique (comme l'ensemble des nombres réels par exemple) repose sur le fait qu'à partir d'un certain rang, la distance entre les termes de la suite et sa limite éventuelle doit être moindre que toute quantité strictement positive donnée à l'avance.
    Définition : soit une suite numérique et un nombre strictement positif (aussi petit que l'on veut). S'il existe un nombre L et un entier N tels que pour tous les nombres entiers n supérieurs à N, la distance entre les termes et L est plus petite que , alors la suite est dite convergente de limite L. Dans ce cas (et uniquement dans ce cas), on note : .

    - La convergence d'une suite ne fait appel en réalité qu'à des notions topologiques : une suite converge vers un point si pour tout ouvert U contenant , il existe un rang N à partir duquel tous les termes appartiennent à U. Attention toutefois, une suite peut avoir plusieurs limites dans des espaces non-séparés.
    Dernière modification par martini_bird ; 24/04/2006 à 02h55.
     

  3. martini_bird

    Date d'inscription
    octobre 2004
    Localisation
    Paris
    Âge
    36
    Messages
    6 910

    Re : FAQ: Questions souvent posées en mathématiques

    Peut-on toujours calculer une intégrale?

    Certaines fonctions comme ou admettent des primitives1 qui ne peuvent pas être exprimée à l'aide des fonctions usuelles (fractions rationnelles, exponentielles, logarithmes, fonctions circulaires).

    Ce résultat, connu de Liouville dès 1830, est à comparer avec l'impossibilité de résoudre par radicaux certaines équations polynômiales. De fait, c'est la même théorie qui est à l'oeuvre : celle des extensions de corps et des correspondances de Galois. On doit à Ostrowski la formulation moderne en termes de corps différentiels (1946): c'est la théorie de Galois différentielle.

    On en parle :

    Pour en savoir plus
    • M1 - [PDF] Algèbre corporelle, par A. Chambert-Loir. (187 pages)
      Chapitre 6: théorie de Galois différentielle.

    ____________________
    1 Une primitive de est par exemple .
     

  4. danyvio

    Date d'inscription
    octobre 2006
    Localisation
    Lyon
    Âge
    75
    Messages
    3 226

    Re : FAQ: Questions souvent posées en mathématiques

    Bonjour ! Concernant l'égalité 1=0,999999..., on peut sans passer par les limites dire :
    Soit é quelconque strictement positif. Comme 1-0,999999... = 10 puissance -n (n étant le nombre de 9 derrière la virgule), quand n tend vers l'infini, 1-0.9999... tend vers zéro (on le savait déjà!).

    Donc, à partir d'un certain rang, 1-0.9999... est strictement plus petit que é.
    Etant strictement plus petit que tout nombre strictement positif arbitrairement choisi, il ne peut qu'être nul. D'où 1=0.999999... CQFD.
    Question : tout nouveau sur ce site, comment entre t-on les formules ? Merci
     

  5. martini_bird

    Date d'inscription
    octobre 2004
    Localisation
    Paris
    Âge
    36
    Messages
    6 910

    Que signifie le "dx" dans une intégrale ?

    Que signifie le "dx" dans une intégrale ?

    Réponse rapide

    Il faut bien préciser quelle est la variable d'intégration : dx remplit ce rôle.

    ________________

    Réponse de physicien
    Pourvu que f soit une fonction suffisamment régulière, l'intégrale mesure l'aire de la partie du plan limitée par les droites d'équations , , et la courbe d'équation .

    Or la méthode des rectangles pour évaluer cette aire permet d'écrire que :



    . Le dx est ainsi vu comme l'analogue infinitésimal de .

    ________________

    Réponse faisant appel à la théorie de la mesure

    Dans la construction de Lebesgue, une intégrale s'évalue relativement à une mesure . On note cette intégrale



    et dans ce cadre est la mesure de Lebesgue sur .

    ________________

    Réponse géométrique

    Le fait est que l'on n'intègre pas des fonctions mais des formes différentielles. Soit M une variété différentielle : brutalement, une forme différentielle est une section du fibré cotangent (ou plus généralement du fibré des p-formes). L'important pour notre propos est qu'une forme différentielle de degré 1 est une application qui à chaque point associe une forme linéaire , qui se projète sur la base de . Cette construction ne présente bien sûr peu d'intérêt pour l'étude de fonctions d'une variable réelle.
     


    • Publicité



  6. Seirios

    Date d'inscription
    mai 2005
    Localisation
    Dans le plan complexe
    Âge
    26
    Messages
    10 426

    Démonstration de la formule du volume d'une sphère

    Démonstration de la formule du volume d'une sphère :

    Considérons une sphère de rayon

    [Voir les autres notations sur la pièce jointe]

    Exprimons en fonction de et de termes constants :

    D’après le théorème de Pythagore, on a :

    D’où

    Donc

    On en conclut que pour toute sphère de rayon , on a
    Images attachées
    If your method does not solve the problem, change the problem.
     

  7. Antho07

    Date d'inscription
    octobre 2007
    Âge
    29
    Messages
    1 121

    Re : FAQ: Questions souvent posées en mathématiques

    Pour montrer que 0,999999.......=1, y'a plus simple comme démo.
    soit a=0,99999999.....
    alors 10a=9,99999....
    et 10a-a= 9,999999....-0,999999999=9
    or 10a-a=9a=9
    d'où a=1.

    Bien sur ta démo est plus intéressante mais pour ceux qui en veulent une beacoup plus simple voilà.

    Cette méthode la permet de manière général de retrouver à quelle fraction correspond un nombre à virgule ne se terminant pas mais possèdant une périodicité. IL suffit de multiplier par 10^(la longueur de la période et de faire la différence pour ensuite en déduire la fraction par différence comme précédemment.

    exemple avec b=2,546 546 546 546....
    1000b=2546,546 546....
    soit 999b=2546 et finalement b= 2546/999
     

  8. Antho07

    Date d'inscription
    octobre 2007
    Âge
    29
    Messages
    1 121

    Re : FAQ: Questions souvent posées en mathématiques

    Pour montrer que 0,999999.......=1, y'a plus simple comme démo.
    soit a=0,99999999.....
    alors 10a=9,99999....
    et 10a-a= 9,999999....-0,999999999=9
    or 10a-a=9a=9
    d'où a=1.

    Bien sur ta démo est plus intéressante mais pour ceux qui en veulent une beacoup plus simple et compréhensible dès le collège voilà.

    Cette méthode la permet de manière général de retrouver à quelle fraction correspond un nombre à virgule ne se terminant pas mais possèdant une périodicité. IL suffit de multiplier par 10^(la longueur de la période et de faire la différence pour ensuite en déduire la fraction par différence comme précédemment.

    exemple avec b=2,546 546 546 546....
    1000b=2546,546 546....
    soit 999b=2546 et finalement b= 2546/999
     

  9. magic-men

    Date d'inscription
    octobre 2007
    Messages
    17

    Re : FAQ: Questions souvent posées en mathématiques

    on peut aussi demontrer que 0.9999...=1 par :
    on a 1/3 = 0.333.....
    1/3*3=1 ou bien
    1/3*3=0.333....*3 =0.999999....
    alor on a 1=0.99999...
     

  10. VictorVVV

    Date d'inscription
    novembre 2007
    Âge
    26
    Messages
    7

    Re : FAQ: Questions souvent posées en mathématiques

    antoo7 :

    999b = 2544
     

  11. shynoa

    Date d'inscription
    août 2007
    Âge
    29
    Messages
    32

    Re : FAQ: Questions souvent posées en mathématiques

    Citation Envoyé par martini_bird Voir le message
    Peut-on toujours calculer une intégrale?

    Certaines fonctions comme ou admettent des primitives1 qui ne peuvent pas être exprimée à l'aide des fonctions usuelles (fractions rationnelles, exponentielles, logarithmes, fonctions circulaires).
    voilà, je voulais juste signaler que l'intégrale sur lR de

    bien que n'admettant pas de primitive est calculable;
    valeur:
    racine de pi

    par contre sauf erreur de ma part,
    la longueur d'arc de l'ellipse, elle, est une intégrale non calculable;
    c'est une nouvelle fonction, dont tout comme cos ou sin, on peu en obtenir une approximation aussi fine que l'on veut.
    je la chercherai demain dans mes cours et je donnerai la formule au plus tôt, promis!
     

  12. rajamia

    Date d'inscription
    juillet 2007
    Localisation
    chez moi
    Messages
    562

    Re : FAQ: Questions souvent posées en mathématiques

    salut

    pour montrer je pense si on pose alors et donc qui donne et par suite .

    voila
     

  13. thomas5701

    Date d'inscription
    janvier 2008
    Âge
    26
    Messages
    232

    Re : FAQ: Questions souvent posées en mathématiques

    Bonjour à tous, pour 0.999...=1 on peut aussi partir du principe:

    0.9999...= 0.333.. + 0.333... + 0.333... =1/3 + 1/3 + 1/3= 3/3 = 1


    Ce n'est pas un raisonnement très complexe, mais sa tombe juste, alors pourquoi pas?
     

  14. _extreme_

    Date d'inscription
    août 2008
    Messages
    1

    Re : FAQ: Questions souvent posées en mathématiques

    mais comment montres tu que 0.3333 = 1/3 ?
     

  15. bubulle_01

    Date d'inscription
    décembre 2007
    Âge
    25
    Messages
    531

    Re : FAQ: Questions souvent posées en mathématiques



    Pour ne pas faire compliqué ...
    Sinon, on peut faire tout simplement la division de 1 par 3 ...
     


    • Publicité







Sur le même thème :





 

Discussions similaires

  1. FAQ: Questions souvent posées en électronique
    Par monnoliv dans le forum Électronique
    Réponses: 35
    Dernier message: 01/08/2017, 15h26
  2. FAQ : Questions souvent posées en astrophysique
    Par deep_turtle dans le forum Astronomie et Astrophysique
    Réponses: 11
    Dernier message: 27/03/2017, 05h46
  3. FAQ : questions souvent posées en physique
    Par deep_turtle dans le forum Physique
    Réponses: 10
    Dernier message: 12/03/2007, 07h57