Bonjour, cliquez-ici pour vous inscrire et participer au forum.
  • Login:



+ Répondre à la discussion
Affichage des résultats 1 à 14 sur 14

Physique quantique : commutation d'opérateurs

  1. Infra_Red

    Date d'inscription
    septembre 2007
    Localisation
    Paris
    Âge
    26
    Messages
    1 366

    Physique quantique : commutation d'opérateurs

    bonjour,

    j'ai dû mal à comprendre la commutation d'observable.
    un exemple, on a :


    on développe tout ça.
    et là, la prof simplifie certains termes, par exemple :
    ou encore

    j'en déduis donc qu'il y a un certain ordre dans les termes à respecter, mais lequel ?

    d'où ma question,
    merci


     


    • Publicité



  2. mariposa

    Date d'inscription
    février 2005
    Localisation
    Bretagne Côtes d'Armor
    Âge
    65
    Messages
    10 307

    Re : physique quantique : commutation d'opérateurs

    Citation Envoyé par Infra_Red Voir le message
    bonjour,

    j'ai dû mal à comprendre la commutation d'observable.
    un exemple, on a :


    on développe tout ça.
    et là, la prof simplifie certains termes, par exemple :
    ou encore

    j'en déduis donc qu'il y a un certain ordre dans les termes à respecter, mais lequel ?

    d'où ma question,
    merci
    Bonjour,

    Il faut tenir compte du caractère commutant ou non de 2 opérateurs:

    Si tu as:

    [A,B] = 0

    alors A.B = B.A

    cad tu peux changer l'ordre comme s'il s'agissait des nombres ordinaires.

    Il te manque donc l'inventaire de tous les commutateurs.

    Comme il y a 6 sortes d'opérateurs: x ,y , z, Px, Py ,Pz

    Tu as donc 36 commutateurs à connaitre.

    As toi de jouer.
     

  3. vaincent

    Date d'inscription
    octobre 2008
    Localisation
    Vannes
    Messages
    2 709

    Re : physique quantique : commutation d'opérateurs

    Citation Envoyé par mariposa Voir le message
    Comme il y a 6 sortes d'opérateurs: x ,y , z, Px, Py ,Pz

    Tu as donc 36 commutateurs à connaitre.
    Tu es allé un peu vite je pense ! Le nombre de combinaisons de 2 dans 6 est 15. (6!/(2! (6-2)!) = 15). Puisque l'on sait que les opérateurs position commutent entre eux, et de même pour les opérateurs impulsion, cela ne fait plus que 9 relations à connaître, qui peuvent être résumés dans le formule suivante :



    avec i,j = 1,2,3 tels que x1=x, x2=y, x3=z (même chose pour l'impulsion), et est le symbole de Kronecker qui vaut 1 si i=j et 0 sinon.
     

  4. Infra_Red

    Date d'inscription
    septembre 2007
    Localisation
    Paris
    Âge
    26
    Messages
    1 366

    Re : physique quantique : commutation d'opérateurs

    ça m'avance pas...

    pourquoi elle écrit : -y.pz.x.pz = -xy.(pz)² et pas -(pz)².yx
    y'a un ordre à respecter ?

    de même :
    [AB,C]=A[B,C]+[A,C]B
    est-ce égale à [B,C]A+B[A,C] ?

    et enfin un petit HS :

    c'est une représentation matricielle ?
    comment traduire les ?

    merci
     

  5. Spinfoam

    Date d'inscription
    février 2008
    Âge
    45
    Messages
    351

    Re : physique quantique : commutation d'opérateurs

    Par déf, et c'est tout.
    Lorsque deux opérateurs commutent, par exemples A et B, c'est à dire , alors .
    D'après les relations de commutation canoniques, , donc typiquement, l'opérateur commute avec et , et ainsi de suite.

    J'ai l'impression que tu ne sais pas ce qu'est un opérateur, je me trompe ?
    Dernière modification par Spinfoam ; 28/11/2009 à 14h55.
     


    • Publicité



  6. Infra_Red

    Date d'inscription
    septembre 2007
    Localisation
    Paris
    Âge
    26
    Messages
    1 366

    Re : physique quantique : commutation d'opérateurs

    Citation Envoyé par Spinfoam Voir le message
    J'ai l'impression que tu ne sais pas ce qu'est un opérateur, je me trompe ?
    pour moi, c'est "quelque chose" qui transforme des vecteurs, des scalaires, des matrices, ...

    tu peux également répondre à mon petit HS ? merci
     

  7. vaincent

    Date d'inscription
    octobre 2008
    Localisation
    Vannes
    Messages
    2 709

    Re : physique quantique : commutation d'opérateurs

    Citation Envoyé par Infra_Red Voir le message
    ça m'avance pas...

    pourquoi elle écrit : -y.pz.x.pz = -xy.(pz)² et pas -(pz)².yx
    y'a un ordre à respecter ?
    oui il y a un ordre à respecter lorsque 2 opérateurs ne commutent pas. Les nombres commutent, mais pas forcément les matrices(on peut représenter des opérateurs par des matrices). Je t'ai donner les relations de commutation, il n'y a plus qu'à les utiliser, et aussi comprendre que ces x, y, pz, etc..., sont des matrices !(plus exactement, peuvent-être représenté par des matrices)
     

  8. Spinfoam

    Date d'inscription
    février 2008
    Âge
    45
    Messages
    351

    Re : physique quantique : commutation d'opérateurs

    Pour ton HS, tu peux vérifier facilement que et sont des projecteurs si ta base est orthonormée.
    Dans ton exemple, l'espace de hilbert sur lequel ton hamiltonien est défini est de dimension 2, et tu as donc simplement (somme des projecteurs).

    Tu peux ainsi représenter par une matrice et l'écrire selon ses éléments de matrices. car ton hamiltonien est antidiagonale dans l'exemple que tu as donné. Tu peux ainsi interpréter comme le projecteur sur l'élément de matrice .
     

  9. Infra_Red

    Date d'inscription
    septembre 2007
    Localisation
    Paris
    Âge
    26
    Messages
    1 366

    Re : physique quantique : commutation d'opérateurs

    et autrement :

    ça se développe comment ?

    merci
     

  10. mariposa

    Date d'inscription
    février 2005
    Localisation
    Bretagne Côtes d'Armor
    Âge
    65
    Messages
    10 307

    Re : physique quantique : commutation d'opérateurs

    Citation Envoyé par infra_red Voir le message
    et autrement :

    ça se développe comment ?

    Merci
    [a+b,c] = [b,c] + [a,c]
     

  11. vaincent

    Date d'inscription
    octobre 2008
    Localisation
    Vannes
    Messages
    2 709

    Re : physique quantique : commutation d'opérateurs

    Citation Envoyé par Infra_Red Voir le message
    et autrement :

    ça se développe comment ?

    merci
    les crochets de Lie sont bilinéaire, c'est-à-dire :



    et anti-symétrique :



    (ces 2 propriétés sont très facilement démontrables (c'est un bon exercice de le faire pour s'en rendre compte par soi-même))
     

  12. Infra_Red

    Date d'inscription
    septembre 2007
    Localisation
    Paris
    Âge
    26
    Messages
    1 366

    Re : Physique quantique : commutation d'opérateurs

    donne bien ?

    parce que dans un exo, je dois démontrer :








    (le reste vaut 0)



    alors qu'on doit trouver +ihpy
     

  13. vaincent

    Date d'inscription
    octobre 2008
    Localisation
    Vannes
    Messages
    2 709

    Re : Physique quantique : commutation d'opérateurs

    Citation Envoyé par Infra_Red Voir le message
    donne bien ?
    oui, sauf que dans ton avant dernière ligne :




    alors qu'on doit trouver +i\hbar py
    on a , ainsi
     

  14. Infra_Red

    Date d'inscription
    septembre 2007
    Localisation
    Paris
    Âge
    26
    Messages
    1 366

    Re : Physique quantique : commutation d'opérateurs

    ok merci
    j'ai enfin compris

    merci à tous
     


    • Publicité




Poursuivez votre recherche :




Sur le même thème :




 

Discussions similaires

  1. physique quantique et mécanique quantique
    Par starsign dans le forum Physique
    Réponses: 19
    Dernier message: 20/10/2009, 20h34
  2. vulgarisation:physique newtonienne,relativité et physique quantique
    Par bashad dans le forum Lectures scientifiques
    Réponses: 3
    Dernier message: 04/10/2007, 18h26
  3. commutation des opérateurs exp en physique quantique
    Par amouch dans le forum Physique
    Réponses: 1
    Dernier message: 17/11/2005, 15h57
  4. Sens physique de la relation de commutation
    Par Lévesque dans le forum Physique
    Réponses: 16
    Dernier message: 01/10/2005, 21h07
  5. Joindre la physique quantique à la physique relativiste...
    Par mort_khan/Triskaël dans le forum Physique
    Réponses: 79
    Dernier message: 01/08/2005, 16h03