Répondre à la discussion
Affichage des résultats 1 à 2 sur 2

Fonctions "élémentaires"



  1. #1
    fderwelt

    Fonctions "élémentaires"


    ------

    Bonjour à tous,

    Voilà plusieurs fois (beaucoup, en fait) que je vois ici des questions "qui ne peuvent pas se résoudre au moyen de fonctions élémentaires". Autrement dit, on a droit aux puissances, aux racines, à exp, ln, sin, cos... mais pas à erf ni aux fonctions de Bessel.

    Alors je m'interroge: qu'est-ce qu'on appelle une fonction élémentaire ?

    Pour la fonction x x², pas de problème: ça donne l'aire d'un carré de côté x. Il y a une interprétation géométrique évidente. Et pas besoin d'une imagination délirante pour passer à x x³, ni aux puissances supérieures, ni aux fionctions réciproques (racines carrées, cubiques...)

    Quand on s'intéresse aux angles plutôt qu'aux longueurs, ou plus exactement via les longueurs, un beau cercle trigonométrique avec ses tangentes montre que les sin, cos, tan et autres ont aussi une interprétation géométrique simple. Et on peut faire pareil avec une ellipse, une hyperbole, ou n'importe quelle conique en fait (encore que je n'ai jamais entendu parler de sinus parabolique...)

    Bon, tout ça se construit à la règle et au compas, on peut admettre le terme "fonction élémentaire".

    Mais l'exponentielle et sa réciproque le logarithme? Et les fonctions d'Euler ou de Möbius, considérées comme élémentaires en arithmétique?

    En gros, à quelle page (ou chapitre) du Abramowitz & Stegun doit-on placer la barre pour dire quelles fonctions ont le "droit" de s'appeler "élémentaires"?

    -- françois

    -----
    Les optimistes croient que ce monde est le meilleur possible. Les pessimistes savent que c'est vrai.

  2. #2
    Ledescat

    Re : Fonctions "élémentaires"

    Je dirais simplement qu'une fonction élémentaire est une fonction que l'on ne peut pas construire à partir de celles que l'on connaît déjà.On pourrait d'ailleurs peut-être dire que cos et sin ne sont pas élémentaires car définisables grâce à l'exponentielle complexe.Mais comme cos et sin sont omniprésentes, elles ont un statut de fonction élémentaire
    On a voulu calculer l'aire sous une hyperbole (figure constructible facilement et connue depui des millénaires), on a donc introduit le lograithme népérien, et par là même sa réciproque.
    Ces fonctions élémentaires sont les "atomes" de l'ensemble des applications au même titre que les nombres premiers sont les "atomes" des entiers.
    Cogito ergo sum.

Discussions similaires

  1. Convergence uniforme d'une "famille" de fonctions ?
    Par Gpadide dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 27/02/2007, 20h01
  2. Fonctions en escalier "usuelles"
    Par Nox dans le forum Mathématiques du supérieur
    Réponses: 13
    Dernier message: 31/12/2006, 13h31