J'ai fait quatre années de recherche pour un doctorat de mathématiques, et j'ai alors pu exprimer (j'avais atteint un niveau d'étude qui pouvait me permettre d'oser…) à mon directeur de thèse certaines notions mathématiques qui me mettaient mal à l'aise depuis bien longtemps et de pistes particulières que j'avais envie d'explorer. Mais je n'avais pas reçu son assentiment, on ne pouvait toucher aux fondamentaux sacrés des mathématiques, et je me suis jurer de m'y pencher un jour en solitaire téméraire.
On peut considérer toute entité ayant une interaction avec l'univers comme un observateur. Et aucune observation d'une telle entité ne peut aller au-delà de ce que l'univers permet d'observer. Mais il me faut préciser les notions d'interaction et d'observation. Si par exemple il existe des dimensions supplémentaires, on pourrait penser qu'elles ne sont pas "observables" d'un certain point de vue, mais en réalité, parce qu'indirectement elles génèrent des interactions avec les autres éléments de l'univers, on peut considérer que dans un certain sens elles sont observables ou pour faire plaisir à certains, virtuellement observables. Les mathématiciens sont donc comme les physiciens, des observateurs de ce qui nous entoure et il est absolument impossible qu'une notion mathématique juste sorte du cadre de cette observation, sinon ce serait de la science-fiction.
Or bon nombre de physiciens remettent en cause, avec raison selon moi, la notion floue des "infinis", un des outils phare des mathématiques. Si elle a tout son sens dans certains contextes où elle permet de conclure de façon relative une chevauchée dont les effets deviennent négligeables, voire inutiles, elle devient dangereuse quand elle devient cette "non limite" que notre esprit nous impose quand nous suivons aveuglément certaines directions des espaces mathématiques (et qu'elles ont prêtées aux sciences physiques pour "regarder" l'espace de notre univers). Je pense sincèrement que la notion d'infini n'a de sens que dans cet aveuglément. Le problème c'est que jusqu'ici, malgré ces "yeux fermés", ces mathématiques "fonctionnent" et cela semble légitimer un handicap qui selon moi est la cause de nombreux blocages scientifiques. D'ailleurs ce principe qui veut que ce qui marche brouille ou interdit de nombreuses interrogations capitales est le pilier de bon nombre de doctrines douteuses et presque toujours dictatoriales. Il est difficile d'imaginer que les mathématiques aient de tels travers, mais en se refusant de reconnaître clairement que là où elles mettent l'infini c'est tout simplement parce qu'elles ignorent, elles ont fini par imposer un mensonge et surtout elles ont empêché durant des siècles que certains esprits aillent chercher ailleurs. Mais, on peut leur trouver des circonstances atténuantes, car elles ont été piégées par un outil qu'elles ont fabriqué à partir de leur observation de l'univers: la relation d'ordre qui permet d'ordonner les distances et les volumes. Elle ne pouvait que les conduire au casse-tête des infinis.
Je démontrerai dans un livre que je prépare les effets néfastes de ces infinis qui ont fermé de fabuleuses portent que des outils mathématiques de base auraient pu ouvrir depuis bien longtemps. Des interrogations essentielles n'ont pas été explorées et de "fausses" définitions qui "marchaient" ont permis de construire une belle maison science qui bute contre des murs solides. Ainsi, Zéro, le Point, les Dimensions et surtout le TEMPS ont été incroyablement négligés ou superficiellement explorés. Le TEMPS, cette chose qui permet à tous les points (même ceux du vide) de l'univers de passer à un nouvel état à chaque instant, me semble être la clé à déchiffrer pour pouvoir réouvrir autrement les portes fondamentales des sciences.
Comment définiriez-vous la continuité et la discontinuité si vous étiez privé de l'outil "infini"? C'est possible et on les verrait tout autrement. IN et IR ont tellement, tellement d'autres fabuleuses histoires à nous raconter sur notre passé, sur nos origines, et de superbes prévisions à nous confier sur notre futur.
-----