Bonjour,
J'ai trouvé les propriétés suivantes :
Soit G= (E, K) un graphe,
- si chacun des deux noeuds de G peuvent être reliés par une arrête, alors G est, deux noeuds du graph sont toujours reliables par une chaîne.
- Si G n'a pas de boucle,
alors G ne peut être un arbre, que si, pour tous les noeuds, deux noeuds différents peuvent être reliés par une unique chaîne.
Je n'ai aucune idée pour la démonstration de la première propriété. Je voudrais donc quelques conseils.
Pour la deuxième, je pense qu'il faut dire qu'un arbre ne peut pas accepter de cycles. Donc s'il y avait deux chaines, ce ne pourrait être un arbre.
Qqun pourrait-il m'aider à rendre cette démonstration plus cohérente?
Merci d'avance
-----