un Ensemble, c'est quoi?
Répondre à la discussion
Page 1 sur 2 1 DernièreDernière
Affichage des résultats 1 à 30 sur 54

un Ensemble, c'est quoi?



  1. #1
    invitea77054e9

    un Ensemble, c'est quoi?


    ------

    Hello,

    L'objet de mon post est dans son titre.
    En fait, l'an dernier j'ai eu droit au fameux "un ensemble, c'est une collection d'objet...vous verrez ce qu'est rigoureusement un ensemble plus tard..." lors de mon premier cours d'algèbre!
    J'ai laissé de côté cette définition un moment, mais me voilà devenu l'hotage de ma curiosité. Sauvez-moi .
    Comment définit-on concrètement un ensemble? Si cela relève de notion trop avancé pour être traitée sur quelques lignes, je me "contenterais" d'idées qui me permettrons d'approfondir la question par moi-même.

    Merci d'avance.

    -----

  2. #2
    invite48af87b5

    Re : un Ensemble, c'est quoi?

    Je crois qu'on ne définit pas les ensembles (de nos jours)...

  3. #3
    invite39dcaf7a

    Re : un Ensemble, c'est quoi?

    Euhhh... Un ensemble, c'est dur à définir : c'est un rassemblement d'objets appelés éléments pourrait-on dire...

    Mais je ne vois pas comment définir un ensemble de manière plus rigoureuse... Tu ne confonds pas avec la théorie des ensembles, au moins ? Non pourtant...

  4. #4
    invite48af87b5

    Re : un Ensemble, c'est quoi?

    Par rigoureusement, le prof a probablement voulu dire la chose suivante :
    - on décide d'appeler ensemble des entités qu'on ne définit pas
    - on se donne des règles du jeu précises et rigoureuses (des axiomes) de manipulation de ces entités
    - on peut fonder toute ("toute" ? ça fait débat) la mathématique avec ces règles du jeu

    Exemple de règle du jeu : étant donné un ensemble A et une propriété P, on a le droit de définir l'ensemble des éléments de A qui vérifient P.

  5. A voir en vidéo sur Futura
  6. #5
    invitea3eb043e

    Re : un Ensemble, c'est quoi?

    Je suis assez bien hedron : je dirais que des éléments (n'importe quoi a priori) qui ont quelque chose en commun forment un ensemble.
    Je n'ai jamais entendu parler de l'ensemble des choses qui n'ont aucun rapport les unes avec les autres.
    L'inventaire de Prévert ne constituerait alors pas un ensemble.

  7. #6
    invite55c88d9c

    Re : un Ensemble, c'est quoi?

    Peut etre que si tu te demandes ce que ce n'est pas,tu verra que tout peut etre considere comme ensemble;Ainsi en raisonnant par l'absurde on peut comprendre la notion d'ensemble :
    un ensemble c'est tout et
    tout est ensemble.

  8. #7
    invite8f53295a

    Re : un Ensemble, c'est quoi?

    En fait c'est plutôt du domaine de la logique mathématique. C'est un modèle constitué d'"objets (il y aura toujours un truc non définissable au début), et d'une relation "appartient" entre ces objets. De plus ce modèle doit vérifier quelques propriétés appelés "axiomes de Zermelo-Frankel" je crois que je ne connais pas par coeur. Mais bien sûr il faut en plus admettre l'existence d'un tel modèle, où le faire apparaître dans une théorie encore plus générale dont il faudra admettre aussi l'existence d'un modèle... Enfin un vrai logicien trouvera peut-être quelques inexactitudes dans ce que je viens de raconter, ce n'est pas ma spécialité...

  9. #8
    invitea77054e9

    Re : un Ensemble, c'est quoi?

    merci pour toutes ces réponses.

    tant que j'y suis, je suis tombé sur cette affirmation: "...on notera {x,{x,y}} le couple (x,y)..."!
    Est-ce une définition ou y a-t-il un moyen de se convaincre de l'équivalence entre (x,y) et {x,{x,y}}?

  10. #9
    invite48af87b5

    Re : un Ensemble, c'est quoi?

    Bonjour.
    Citation Envoyé par evariste_galois
    tant que j'y suis, je suis tombé sur cette affirmation: "...on notera {x,{x,y}} le couple (x,y)..."!
    Est-ce une définition ou y a-t-il un moyen de se convaincre de l'équivalence entre (x,y) et {x,{x,y}}?
    Ce n'est pas une "vérité". C'est une "convention". Je dirai même une "astuce", qui fait parti du plan de fondation des maths sur un minimum d'axiomes. On aurait pu introduire une notation (x,y) et donner les propriétés qu'on veux qu'elle ait (comme (x,y)=(y,x) <=> x=y ) mais on s'est rendu compte qu'avec l'astuce précédente, on pouvait se "ramener" aux accolades. Mais on aurait très bien pu procéder autrement.
    Exemple : {x,{{x,y}}} ou {x,{x,{y}}} doivent marcher aussi (à vérifier).

    Mais on n'a pas besoin de savoir comment sont construits les couples quand on les utilise. Comme je l'ai dit ci-dessus, on n'a même pas besoin de les construire à partir d'autre chose...

  11. #10
    invite48af87b5

    Re : un Ensemble, c'est quoi?

    Bon, {x,{{x,y}}} marche,
    pour {x,{x,{y}}} je crois que ça ne marche pas
    je crois que {{O,x},{{O},y}} marche où on note O = l'ensemble vide.

  12. #11
    invite4793db90

    Re : un Ensemble, c'est quoi?

    Salut,

    la différence entre (x,y) et {x,y}, c'est qu'il y a une notion d'ordre dans un couple qu'il n'y a pas dans un ensemble à deux éléments. Du coup, pour définir les couples à partir des ensembles, il faut trouver un moyen de distinguer le premier du second élément.

    Je crois que toutes tes propositions fonctionnent, hedron, puisque l'on peut distinguer le x du y.

    Cordialement.

  13. #12
    moijdikssékool

    Re : un Ensemble, c'est quoi?

    Citation Envoyé par hedron
    Par rigoureusement, le prof a probablement voulu dire la chose suivante :
    - on décide d'appeler ensemble des entités qu'on ne définit pas
    - on se donne des règles du jeu précises et rigoureuses (des axiomes) de manipulation de ces entités
    - on peut fonder toute ("toute" ? ça fait débat) la mathématique avec ces règles du jeu
    c'est un peu léger!
    une définition qui dit de ne pas se définir...
    un ensemble A, c'est avant tout une limite (fermée, ouverte...) entre ce qu'elle dit contenir (limite comprise si l'ensemble est dit "fermé") et ce qu'elle ne contient pas (Ac), munis de ses propres axiomes
    Une fois que cela est acquis, on se pose alors la question de l'ensemble Ac ou AUAc
    AUAc est l'ensemble délimité une fois de plus par une limite, munis de ses propres axiomes
    et ainsi de suite, on se pose des questions sur l'ensemble qui n'est pas contenu dans l'ensemble étudié

    Ta question revient à poser celle de savoir qu'est ce que l'ensemble des ensembles. ce dernier, résultat du raisonnement précédent, existe-t-il vraiment puisque il ne contient pas l'ensemble complémentaire à lui-même?
    Donc on en arrive à se dire qu'un ensemble définit comme je l'ai fait est une absurdité étant donné que l'on arrive à une absurdité. Les Mathématiques, qui reposent sur la théories des ensembles, seraient-elles absurdes?

  14. #13
    invite55c88d9c

    Re : un Ensemble, c'est quoi?

    je trouve cela un peu compliquer.Un ensemble est une collection d'objet d'apres nos professeurs.Or tout peut etre représenté comme objet : une fonction ,une loi de composition interne , externe,un ensemble.......sont des objet.Chaqu'un de ces objet possedant des propriétés.La difficulté dans la definition d'un ensemble est que les ensemble sont la base des math.Donc le vocabulaire employé pour definir ce mot doit etre aussi defini.C'est pour cela qu'en definissant le mot objet comme ' ce que l'on veut ' il reste a definir collection.On peut choisir ' quantité '' c'est a dire une collection d'objet sera une quatité d'objet.Finalement on aura pour definition de 'l'ensemble' : une quantité de ce que l'on veut.

  15. #14
    amineyasmine

    Re : un Ensemble, c'est quoi?

    Citation Envoyé par invite48af87b5 Voir le message
    Je crois qu'on ne définit pas les ensembles (de nos jours)...
    Bonjour
    Je me pose une question et je tombe sut un fil de 2005

    C'est quoi un Ensemble?
    C’est très connu, il y a toute une théorie des ensembles qui englobe toutes les maths et qui est totalement constituée d’ensembles, uniquement des ensembles.

    Je poste ce fil car je ne trouve pas de réponse explicite à « C'est quoi un Ensemble? »

    Je relance

    C'est quoi un Ensemble? En mathématique

  16. #15
    gg0
    Animateur Mathématiques

    Re : un Ensemble, c'est quoi?

    Bonjour.

    En termes de mathématiques, un ensemble est un objet de base. c'est soit un objet donné (l'ensemble vide, par exemple), soit ce qui se trouve à droite d'un symbole (et d'autres par construction). Comme on construit les mathématiques à partir de cette notion, elle n'a pas de définition mathématique.
    Après, on trouve partout des définitions intuitives (voir par exemple "théorie naïve des ensembles) et des explicitations métamathématiques, voire philosophiques.

    Pourquoi prendre cette discussion assez confuse alors qu'existent sur Internet des réponses sérieuses (*) ?

    (*) Par exemple la page Wikipédia ensembles.

  17. #16
    amineyasmine

    Re : un Ensemble, c'est quoi?

    Bonjour
    Vu sur internet :
    Un ensemble désigne intuitivement un rassemblement d’objets distincts (les éléments de l'ensemble)

    Ceci on le connait tous, depuis le primaire. On connait l’ensemble N, Z , Q et R sans même connaitre la théorie formelle des ensembles.

    Ceci depuis jadis, mais un jour vient cette théorie formelle des ensembles et l’ensemble n’a plus sa définition qu’il avait depuis le début des temps des maths.

    Alors soit qu’on donne une nouvelle définition de « ensemble » ou on garde la définition initiale ou carrément changer le nom de l’élément fondamental de la théorie formelle des ensembles
    Dernière modification par amineyasmine ; 19/02/2025 à 21h02.

  18. #17
    stefjm

    Re : un Ensemble, c'est quoi?

    Citation Envoyé par amineyasmine Voir le message
    Alors soit qu’on donne une nouvelle définition de « ensemble » ou on garde la définition initiale ou carrément changer le nom de l’élément fondamental de la théorie formelle des ensembles
    C'est un classique en mathématique de définir de ce dont on parle en le nommant avec un nom déjà existant en rapport plus ou moins proche avec le sujet du jour.

    Ensemble, groupe, quotient, relation, réel, imaginaire, complexe, etc...
    Moi ignare et moi pas comprendre langage avec «hasard», «réalité» et «existe».

  19. #18
    pm42

    Re : un Ensemble, c'est quoi?

    Citation Envoyé par stefjm Voir le message
    C'est un classique en mathématique de définir de ce dont on parle en le nommant avec un nom déjà existant en rapport plus ou moins proche avec le sujet du jour.
    On peut aussi ajouter que si on doit changer le nom de tout ce que amineyasmine ne connait pas, ne comprend pas et refuse d'apprendre le posteur, on n'a pas fini.
    On peut carrément changer le nom de "mathématiques".

  20. #19
    gg0
    Animateur Mathématiques

    Re : un Ensemble, c'est quoi?

    Pourquoi changer de nom ? La théorie des ensembles s'applique aux ensembles naïf, aux ensembles que tu "connais depuis le primaire". Les "collections d'objets". Mais aussi elle permet de définir clairement ces ensembles N, Z , Q et R que tu crois connaître. Et de traiter les questions d'ensembles infinis sans raconter n'importe quoi.
    Quant à ta phrase "et l’ensemble n’a plus sa définition qu’il avait depuis le début des temps des maths." elle montre que, comme toujours tu parles de ce que tu ne connais pas. Dans "le début des temps des maths" on a manipulé des ensembles sans chercher à réfléchir à la notion générale d'ensemble. Et quand on a commencé à y penser (il y a moins de 2 siècles), on a trouvé des difficultés qui ont nécessité de définir une théorie solide.
    Et si cette théorie te gène, laisse courir ... on n'est pas obligé de venir raconter n'importe quoi sur les forums de maths. Ou apprends.

  21. #20
    amineyasmine

    Re : un Ensemble, c'est quoi?

    Citation Envoyé par pm42 Voir le message
    On peut aussi ajouter que si on doit changer le nom de tout ce que amineyasmine ne connait pas, ne comprend pas et refuse d'apprendre le posteur, on n'a pas fini.
    On peut carrément changer le nom de "mathématiques".
    bonjour
    c'est vrai
    le nom c'est pas l'essentiel. changer pour changer n’importe rien

  22. #21
    oxycryo

    Re : un Ensemble, c'est quoi?

    un ensemble se défini par la règle logique permettant de décider si oui ou non quelque chose peut en être élément

    soit les escargots ne sont pas des mammifères... (comme exemple de base)... « ils ne nourrissent pas leur petits avec du lait »

    lisant le premier post, j'ai tiqué sur la notion de collection, qui me semble-être un état non-défini...(n'importe quel objet peut en être élément) soit une collection par définition, et par là ne saurait-être un ensemble...

    à moins que ce ne soit la catégorie qui soit définie, ou bien le taxon

    à moins que l'ensemble ne soit la catégorie-mère de tout les types d'ensemble, soit un accumulat d'objets liés entre eux par une définition
    libera me : ungoogled chromium, e.foundation (anti-droid)

  23. #22
    pm42

    Re : un Ensemble, c'est quoi?

    Citation Envoyé par oxycryo Voir le message
    un ensemble se défini par la règle logique permettant de décider si oui ou non quelque chose peut en être élément

    soit les escargots ne sont pas des mammifères... (comme exemple de base)... « ils ne nourrissent pas leur petits avec du lait »

    lisant le premier post, j'ai tiqué sur la notion de collection, qui me semble-être un état non-défini...(n'importe quel objet peut en être élément) soit une collection par définition, et par là ne saurait-être un ensemble...

    à moins que ce ne soit la catégorie qui soit définie, ou bien le taxon

    à moins que l'ensemble ne soit la catégorie-mère de tout les types d'ensemble, soit un accumulat d'objets liés entre eux par une définition
    Cela n'a rien à voir avec les maths, c'est vaguement une description de la taxonomie et encore. Cela ne prend pas en compte tous ce qui fait la théorie des ensembles notamment les 8 axiomes de ZFC sans même parler de son degré d'abstraction, rien sur l'infini, etc.

    Et bien sur, cela ne prend pas en compte le fait qu'il y a plusieurs systèmes d'axiomes qui fondent plusieurs définitions et que ZF et ZFC sont les plus connus mais pas les seuls.
    Dernière modification par pm42 ; 21/02/2025 à 05h48.

  24. #23
    oxycryo

    Re : un Ensemble, c'est quoi?

    bon, je le note, les maths n'ont plus rien à voir avec la logique... point de vue toujours pertinents PM42..
    libera me : ungoogled chromium, e.foundation (anti-droid)

  25. #24
    pm42

    Re : un Ensemble, c'est quoi?

    Citation Envoyé par oxycryo Voir le message
    bon, je le note, les maths n'ont plus rien à voir avec la logique... point de vue toujours pertinents PM42..
    Non, ce que tu as dit n'était pas de la logique non plus, juste des phrases sans grand rapport avec le sujet.
    Par exemple, taxon n'est pas utilisé en maths, c'est un mot qui vient de la bio.

    Et personne n'utiliserait "catégorie" comme tu l'as fait parce que la théorie des catégories, c'est encore autre chose de plus récent et plus vaste que la théorie des ensembles alors que tu mélanges clairement les deux.
    Dernière modification par pm42 ; 21/02/2025 à 08h01.

  26. #25
    MissJenny

    Re : un Ensemble, c'est quoi?

    Citation Envoyé par oxycryo Voir le message
    soit les escargots ne sont pas des mammifères... (comme exemple de base)... « ils ne nourrissent pas leur petits avec du lait »
    quand je suis entré en sixième, c'est comme ça qu'on m'a appris les rudiments de la manipulation (je n'ose pas dire la théorie) des ensembles : on les voyait comme des collections d'objets concrets. Ca aide à s'en faire une idée mais il faut dépasser cette représentation intuitive sous peine de devoir en rester à des résultats très élémentaires.

  27. #26
    gg0
    Animateur Mathématiques

    Re : un Ensemble, c'est quoi?

    Oxycryo,

    ce que tu développes au début du message #21 est une des présentations de la théorie naïve des ensembles (celle du début, de Cantor à la crise des fondements). "un ensemble se définit par la règle [] permettant de décider si oui ou non quelque chose peut en être élément" (*) était l'idée initiale, mais elle a conduit à une impasse. Par exemple à l'existence de l'ensemble de tous les ensembles, qui est contradictoire (**) comme l'a montre Bertrand Russell. On a pu s'en sortir en restreignant la notion d'ensemble, en éliminant toute référence externe à la signification de "ensemble" (devenu un terme premier). Et en affinant la logique mathématique pour comprendre la construction des objets mathématiques.
    Ce qui fait que ta réaction "je le note, les maths n'ont plus rien à voir avec la logique" est tout à fait contrefactuelle. Les maths ont tout à voir avec la logique (mathématique). À moins que ce mot "logique" ait dans ta tête le sens trop courant de "habitude" (est logique ce qui se passe comme d'habitude).

    Cordialement.

    (*) J'ai supprimé le mot "logique" ne sachant pas ce qu'il veut dire ici.
    (**) tu noteras que comme il contient tous les ensembles, il se contient lui même comme élément.

  28. #27
    stefjm

    Re : un Ensemble, c'est quoi?

    Citation Envoyé par MissJenny Voir le message
    quand je suis entré en sixième, c'est comme ça qu'on m'a appris les rudiments de la manipulation (je n'ose pas dire la théorie) des ensembles : on les voyait comme des collections d'objets concrets. Ca aide à s'en faire une idée mais il faut dépasser cette représentation intuitive sous peine de devoir en rester à des résultats très élémentaires.
    + la relation d’équivalence bien pratique!
    Moi ignare et moi pas comprendre langage avec «hasard», «réalité» et «existe».

  29. #28
    Biname

    Re : un Ensemble, c'est quoi?

    Salut,
    Un truc qui a fait perdre énormément de temps à énormément de monde ?

  30. #29
    stefjm

    Re : un Ensemble, c'est quoi?

    ??...........................
    Moi ignare et moi pas comprendre langage avec «hasard», «réalité» et «existe».

  31. #30
    oxycryo

    Re : un Ensemble, c'est quoi?

    Citation Envoyé par gg0 Voir le message
    Oxycryo,

    ce que tu développes au début du message #21 est une des présentations de la théorie naïve des ensembles (celle du début, de Cantor à la crise des fondements). "un ensemble se définit par la règle [] permettant de décider si oui ou non quelque chose peut en être élément" (*) était l'idée initiale, mais elle a conduit à une impasse. Par exemple à l'existence de l'ensemble de tous les ensembles, qui est contradictoire (**) comme l'a montre Bertrand Russell. On a pu s'en sortir en restreignant la notion d'ensemble, en éliminant toute référence externe à la signification de "ensemble" (devenu un terme premier). Et en affinant la logique mathématique pour comprendre la construction des objets mathématiques.
    Ce qui fait que ta réaction "je le note, les maths n'ont plus rien à voir avec la logique" est tout à fait contrefactuelle. Les maths ont tout à voir avec la logique (mathématique). À moins que ce mot "logique" ait dans ta tête le sens trop courant de "habitude" (est logique ce qui se passe comme d'habitude).

    Cordialement.

    (*) J'ai supprimé le mot "logique" ne sachant pas ce qu'il veut dire ici.
    (**) tu noteras que comme il contient tous les ensembles, il se contient lui même comme élément.
    DSL, mais Bertrand a beau être rusé, ça ne passe pas.. car aucun ensemble n'est membre de lui-même... il y a des méthode pour résoudre un paradoxe, celui d'en critiquer les prémices et non "naïvement" d'en accepter la verbosité et de penser que l'on puisse le résoudre en le triturant dans tout les sens (au risque du pire, comme pour le paradoxe de la flèche de Zénon et les infini de Lagrange (il me semble))... un paradoxe est faux par ses prémices... ce qui est aussi le cas présenté par ce paradoxe...

    delà j'en reste à ma position il est vrai fort naïve et basique, de savoir si oui ou non un élément peut-être inclus dans une collection (définie par là)
    reste que comme l'on ne s'accordera pas sur la notion de logique... qui n'est pas un formalisme,(logique formelle), soit que la logique est une méthode permettant d'éliminer les tiers-exclus...ou options tierce.. (et n'est-ce pas il me semble ce qui obligea à créer les nombres imaginaires, en ce que racine de -4 à deux solutions ? 2 et -2 ? )

    pour la logique, c'est Hegel qui m'a mis sur la voie... "L'erreur dénonce la logique" qui il me semble fait bien le tour du sujet, en rendant explicite l'ensemble de nos actions, par celle qui se trouve-être "invalide/inopérante" façon Wittgenstein (promu par Russel) ou l'at de définir les choses par ce qu'elle ne sont manifestement pas...
    libera me : ungoogled chromium, e.foundation (anti-droid)

Page 1 sur 2 1 DernièreDernière

Discussions similaires

  1. c'est quoi les "registres"?et ça sert a quoi ?
    Par invite6a8018b3 dans le forum Logiciel - Software - Open Source
    Réponses: 16
    Dernier message: 04/05/2009, 21h35
  2. IUT génie electricité c'est bien? c'est quoi?
    Par invite220222df dans le forum Orientation après le BAC
    Réponses: 7
    Dernier message: 16/01/2008, 23h08
  3. C'est quoi dx?
    Par inviteab2b41c6 dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 29/06/2005, 17h02