Répondre à la discussion
Affichage des résultats 1 à 22 sur 22

Primitive de sin(x)*cos(x)



  1. #1
    Flo67400

    Primitive de sin(x)*cos(x)


    ------

    Salut à tous,

    Je cherche la primitive de sin(x)*cos(x) :s j'ai un peu de mal..

    Merci!

    -----

  2. Publicité
  3. #2
    acx01b

    Re : primitive de sin(x)*cos(x)

    tu sais développer cos(a + b), et autre ?

  4. #3
    Flo67400

    Re : primitive de sin(x)*cos(x)

    et bien oui

  5. #4
    Seirios

    Re : primitive de sin(x)*cos(x)

    Bonjour,

    Ne pourrait-on pas utiliser une intégrale indéfinie et un changement de variable ?
    If your method does not solve the problem, change the problem.

  6. #5
    Flo67400

    Re : primitive de sin(x)*cos(x)

    sûrement mais je ne voit pas laquelle :s

  7. A voir en vidéo sur Futura
  8. #6
    stross

    Re : primitive de sin(x)*cos(x)

    tu as le choix, c'est de la forme u*u' ou sinon tu peux te demander que vaut sin(2x)

  9. Publicité
  10. #7
    Kley

    Re : primitive de sin(x)*cos(x)

    salut,
    .

  11. #8
    Flo67400

    Re : primitive de sin(x)*cos(x)

    sin(2x) vaut 2sin(x)cos(x)
    donc sin(2x)/2 = sin(x)cos(x)
    et ensuite?? je suis bloqué lol

  12. #9
    krikor

    Re : primitive de

    Bonjour.

    sinx*cosxdx=sinx*d(sinx)

  13. #10
    Flo67400

    Re : primitive de sin(x)*cos(x)

    Citation Envoyé par Kley Voir le message
    salut,
    .
    et si on prend (sinx dx) on a l'inverse on a alors -1/2cos²(x)+C et c'est plus la même chose :s

  14. #11
    Flo67400

    Re : primitive de sin(x)*cos(x)

    j'ai dit une bétise monumentale, à oublier ^^

  15. #12
    God's Breath

    Re : primitive de sin(x)*cos(x)

    Citation Envoyé par Flo67400 Voir le message
    sin(2x) vaut 2sin(x)cos(x)
    donc sin(2x)/2 = sin(x)cos(x)
    et ensuite?? je suis bloqué lol
    Une primitive de est .
    Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.

  16. Publicité
  17. #13
    Metzo24

    Re : sprimitive de sin(x)*cos(x)

    saluu!! dites pourriez vs m aider a determiner svp l intégrale de racine carré de ( sin(x)+cos(x) ) dx??? je suis bloqué!! merci davance!!

  18. #14
    ansset

    Re : sprimitive de sin(x)*cos(x)

    une intégrale est entre deux bornes, à ne pas confondre avec une primitive.

  19. #15
    Linkounet

    Re : sprimitive de sin(x)*cos(x)

    D'après Wolfram cette fonction n'a pas de primitive s'exprimant avec les fonctions usuelles...

    http://integrals.wolfram.com/index.j...9&random=false

  20. #16
    nightStalker1

    Re : sprimitive de sin(x)*cos(x)

    Salut, je ne sais pas trop comment faire si tu veux une primitive, mais pour l'intégrale tu peux utiliser un changement de variable simple:
    ->On part de

    tu pose:. On utilise car on voit qu'il y à sa dérivée juste à coté .

    Il faut remplacer l'élément differentiel par le nouvel element differentiel .
    Pour le trouver, tu dérive ton en fonction de : .
    Donc .

    Pour finir tu dois redéfinir les bornes de ton intégrales car tu n'intègre plus entre a et b mais entre u(a) et u(b),
    soit et .


    On a donc et on reconnait une intégrale simple!
    La si je ne me trompe pas tu as directement le résultat de l'intégrale.

  21. #17
    gg0

    Re : sprimitive de sin(x)*cos(x)

    A qui réponds-tu ?

    Les derniers messages datent de 3 ans
    Et la question initiale a reçu des réponses tellement plus simples que ton message en devient comique (" je ne sais pas trop comment faire si tu veux une primitive" alors qu' des primitives sont données dès les premières réponses).

    Tu devrais commencer par apprendre à lire (*).

    Cordialement.

    (*) les fils de discussion.

    NB : C'était mon foutage de gueule de fin d'année, mais je te souhaite d'avance de passer une meilleur année 2014. Sincèrement.

  22. #18
    aida1807

    Exclamation Re : primitive de sin(x)*cos(x)

    Bonsoir,

    Cette discussion date pas mal mais j'ai une question qui s'y rapporte directement.

    Pour résoudre l'intégrale entre 0 et 2pi de cos(x)sin(x), j'ai procédé à une intégration par partie (je n'arrivais pas à me souvenir de la valeur de sin(2x) )

    Aussi j'ai posé: u(x)=sin(x), u'(x)=cos(x), v(x)=sin(x), v'(x)=cos(x) et je trouve que l'intégrale de cos(x)sin(x) vaut [sin²(x)]/2.

    Or (sin²(2pi) - sin²(0))/2=0 ce qui est impossible puisque ceci doit correspondre à la longueur d'une courbe.

    J'en déduis que ma méthode est fausse. Mais pourquoi, outre le fait qu'elle n'est pas très élégante?

    Merci d'avance pour vos indications,

  23. Publicité
  24. #19
    gg0

    Re : primitive de sin(x)*cos(x)

    Bonjour.

    Si ton intégrale devait te donner la longueur d'une courbe non réduite à un point, tu t'es trompée avant le calcul de l'intégrale. Car puisque c'est l'intégrale sur deux périodes de la fonction sin(2x) de valeur moyenne nulle.

    Cordialement.

  25. #20
    gg0

    Re : primitive de sin(x)*cos(x)

    NB : [sin²(x)]/2 est bien une primitive de cos(x)sin(x). Vérification immédiate par dérivation.

  26. #21
    topmath

    Re : Primitive de sin(x)*cos(x)

    Bonjour à tous :

    Salut Flo67400 donc pour intégrés vous avez ici un large choix .

    Cordialement

  27. #22
    aida1807

    Re : Primitive de sin(x)*cos(x)

    Merci pour ta réponse ultra rapide.
    En vérifiant mes réponses, j'ai vu qu'il s'agissait en réalité de l'intégrale de |cos(x)sin(x)|. D'où l’intérêt d'utiliser la forme |sin(2x)/2|.
    Bonne soirée !

Discussions similaires

  1. primitive de 1/ sin^3(x)
    Par napoli dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 10/12/2010, 16h53
  2. primitive de [(1/x)*(e^x)]
    Par napoli dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 08/12/2010, 17h25
  3. Primitive
    Par MS.11 dans le forum Mathématiques du supérieur
    Réponses: 8
    Dernier message: 17/10/2008, 17h25
  4. Primitive
    Par matt22 dans le forum Mathématiques du collège et du lycée
    Réponses: 4
    Dernier message: 02/04/2008, 12h14
  5. primitive
    Par jess01 dans le forum Mathématiques du collège et du lycée
    Réponses: 2
    Dernier message: 30/03/2008, 15h16