Paradoxe de l'infini
Répondre à la discussion
Affichage des résultats 1 à 5 sur 5

Paradoxe de l'infini



  1. #1
    invite3f97b78c

    Wink Paradoxe de l'infini


    ------

    Bonjour à tous

    J'ai trouvé quelque chose d'assez intriguant sur le net, voici l'adresse;

    http://www.col-camus-soufflenheim.ac...p?IDP=81&IDD=0

    qui expose les divers aspects que peut prendre la notion d'infini.

    Voici ce qui m'a laissé perplexe quelques instants, un extrait de la page web :

    Un petit exercice accessible à tous qui prouve que 0,99999… = 1:

    Si on pose : x = 0, 99999…, alors :

    10 x = 9, 9999…
    10 x – x = 9,9999… – x
    9 x = 9,9999… – 0,9999…
    9 x = 9
    x = 1

    d’où : 0,99999… = 1


    Curieux non ?

    Bien sûr il y a une infinité de 9 derrière la virgule, je pense avoir trouvé le hic dans cette démonstration, je vous soumets donc ceci à votre critique ...

    A bientôt

    Pascal

    -----

  2. #2
    invite4793db90

    Re : Paradoxe de l'infini

    Salut,

    je me permets de t'indiquer la FAQ où cette question est abordée.

    Cordialement.

  3. #3
    invite88ef51f0

    Re : Paradoxe de l'infini

    Salut,
    Le sujet a déjà été abordé maintes fois... Les points de suspension après les 9 indiquent par définition que le nombre recherché est la limite de la suite 0,9, 0,99, 0,999, ... Cette limite est rigoureusement égale à 1.

  4. #4
    invitea77054e9

    Re : Paradoxe de l'infini

    Tu peux le démontrer plus rigoureusement si tu veux.

    Moi je pense à la démo suivante:

    On considère la série de terme général . On a :
    = 10, vu c'est c'est une série géométrique de raison positive et <1.
    Or, cette série représente justement 9.9999...., d'où 9.9999...=10, et par suite 0.9999.....=1.


    On peut aussi montrer que pour tout A>0, l1-0.9999...l<A. Je te met au défis de trouver un A>0 ne vérifiant pas cette égalité .


    Le point essentiel à retenir ici est la notion de nombres réels définis comme limite d'une suite de nombres rationnels.
    Si on considère la suite des sommes partielles de la série ci-dessus, elle admet des termes tous rationnels, et sa limite notée 0.99999... vaut 1 comme on l'a vu.

  5. A voir en vidéo sur Futura
  6. #5
    invite3f97b78c

    Re : Paradoxe de l'infini

    J'ai été un peu rapide avec ma question, effectivement j'aurai dû explorer un peu plus le forum sur cette question.

    Encore merci pour vos réponses

    Pascal

Discussions similaires

  1. Dl en l'infini
    Par inviteedb947f2 dans le forum Mathématiques du supérieur
    Réponses: 8
    Dernier message: 19/09/2007, 19h16
  2. Paradoxe du paradoxe des jumeaux de Langevin
    Par invitebd8dbca5 dans le forum Archives
    Réponses: 4
    Dernier message: 11/08/2007, 10h40
  3. L'Infini
    Par invitec418c418 dans le forum Mathématiques du supérieur
    Réponses: 7
    Dernier message: 12/10/2006, 05h44
  4. L'infini
    Par invite303d0012 dans le forum Mathématiques du supérieur
    Réponses: 17
    Dernier message: 23/02/2006, 19h05
  5. l'infini
    Par invite9d2d3d4c dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 02/05/2005, 15h24