Répondre à la discussion
Affichage des résultats 1 à 6 sur 6

Besoin d'aide (volume d'un ballon de baudruche)



  1. #1
    Cugel1

    Besoin d'aide (volume d'un ballon de baudruche)

    Bonjour,
    J’ai un probleme à résoudre qui m’apparaît assez compliqué (d'autant plus que je ne suis pas mathématicien!).
    Je souffle dans un ballon à partir d’un instant initiale T0 (il occupe deja un volume non nul et on ne se souci pas de sa forme), celui ci ne se gonfle pas de manière constante car il est de plus en plus difficile de le remplir d’air. A un instant T1, le diametre du ballon a varié d’un certain facteur F. A l’instant T2 tel que T0T1= ½ T1T2, le diametre a encore varié d’un facteur F.
    Par exemple si le facteur F= 2 et T0T1= 1s
    En 1s -> diametre initial*2
    3s -> diametre initial*4
    7s -> diameter initial*8


    Existe t il un moyen de calculer la variation du diametre en fonction du temps ?

    -----


  2. Publicité
  3. #2
    shokin

    Re : Besoin d'aide

    Citation Envoyé par Cugel1
    Par exemple si le facteur F= 2 et T0T1= 1s
    En 1s -> diametre initial*2
    3s -> diametre initial*4
    7s -> diameter initial*8


    Existe t il un moyen de calculer la variation du diametre en fonction du temps ?
    En lisant cela (mais je ne suis pas sûr d'avoir bien compris la règle du jeu), en ns -> diamètre initiale*(n-1)

    Y va y avoir saturation, le ballon de baudruche va éclater et ça va m'énerver (à cause du bruit). Et tu vas continuer bêtement avec un autre ballon de baudruche.

    Shokin
    Pardon, humilité, humour, hasard, tolérance, partage, curiosité et diversité => liberté et sérénité.

  4. #3
    kron

    Re : Besoin d'aide

    Au pif, je dirais que ceci devrait marcher avec une récurrence ou la méthode d'Euler...
    On pourrait calculer les premiers termes et en déduire une dérivée, mais ça serait pas simple...
    Le mieux est d'établir la relation de d(t) de fonction de t... oui oui je sais c'est justement le problème...

    A vu de nez, le diamètre augmente de moins en moins vite pour atteindre une limite, si on considère le ballon comme increvable, on aurait je pense une fontion du genre :

    d(t) = d(0) (1 - e-t/k) où k serait une constante liée aux caractéristiques du ballon...

    Bon voilà des idées, mais comme je ne suis pas versé dans le arts du ballon de baudruche, je dois avouer préférer largement les faire éclater plutôt que de les gonfler ^^

    Cordialement.

    kron
    Life is music !

  5. #4
    martini_bird

    Re : Besoin d'aide (volume d'un ballon de baudruche)

    Salut et bienvenue,

    je vais, si tu le veux bien, rebaptiser le facteur F par k (habitudes de pépé) et noter V(t) le volume du ballon à l'instant t. Je poserai aussi u=T0T1 et V0=V(0) le volume initial du ballon. La loi que tu donnes pour le volume du ballon s'écrit ainsi:

    V( (2n-1)u )=knV0

    En faisant le changement de variable t=(2n-1)u, tu obtiens:



    où log2 est le logarithme de base 2.

    Connaissant le volume et en supposant que ton ballon est une sphère, il ne reste plus qu'à utiliser la formule pour déduire le diamètre à l'instant t:



    Cordialement.
    Dernière modification par martini_bird ; 20/05/2005 à 09h45.

  6. #5
    Cugel1

    Re : Besoin d'aide (volume d'un ballon de baudruche)

    Et bien, je ne pensais pas avoir une réponse aussi rapidement! Merci beaucoup et à bientot,
    Cugel

  7. A voir en vidéo sur Futura
  8. #6
    Cugel1

    Re : Besoin d'aide (volume d'un ballon de baudruche)

    Rebonjour à tous,
    Je vais encore vous embeter avec ce satané ballon.
    Le problème est similaire mais plus général. Maintenant, je cherche calculer la variation de volume du ballon quand T0T1= 1/h T1T2. La solution trouvée marche uniquement pour h=2.
    En reprenant la notation de Martini, j'ai trouvé la relation: (désolé pour la forme)

    V( (h puissance (n-1) + h puissance (n-2) + h puissance (n-3) + ... + h puissance 0 ) u ) = k puissance n Vo

    mais je ne sais pas comment aller plus loin

  9. Publicité

Sur le même thème :

Discussions similaires

  1. besoin d'un correcteur et besoin d'aide
    Par cactus3 dans le forum Mathématiques du collège et du lycée
    Réponses: 8
    Dernier message: 16/12/2007, 19h00
  2. ballon de baudruche
    Par mb4 dans le forum Physique
    Réponses: 2
    Dernier message: 02/05/2007, 12h20
  3. Volume d'air pour un ballon
    Par okto dans le forum Physique
    Réponses: 6
    Dernier message: 21/04/2007, 08h09
  4. Réponses: 0
    Dernier message: 15/02/2007, 09h03
  5. Pression et ballon de baudruche
    Par Winglep dans le forum Physique
    Réponses: 2
    Dernier message: 06/05/2005, 18h29