Plusieurs centres de sphere ?
Répondre à la discussion
Affichage des résultats 1 à 18 sur 18

Plusieurs centres de sphere ?



  1. #1
    SPH

    Arrow Plusieurs centres de sphere ?


    ------

    Salut,
    Il existe une infinité de centre dans la 3eme dimension pour un cercle dessiné sur un plan 2D.
    Mais la question qui me chagrine est :
    Existe t'il au moins un autre centre dans une 4eme dimension SPACIALE pour une sphere ????????


    -----

  2. #2
    invite5150dbce

    Re : Plusieurs centres de sphere ?

    Citation Envoyé par SPH Voir le message
    Salut,
    Il existe une infinité de centre dans la 3eme dimension pour un cercle dessiné sur un plan 2D.

    Ah bon, en es-tu si sur ?

  3. #3
    invite986312212
    Invité

    Re : Plusieurs centres de sphere ?

    SPH, tu parles en fait de la situation où un plan coupe une sphère. L'intersection est un cercle et tu parles du centre de la sphère comme d' "un centre" du cercle. Cette situation se transpose en toutes dimensions.

  4. #4
    SPH

    Re : Plusieurs centres de sphere ?

    Citation Envoyé par hhh86 Voir le message
    Ah bon, en es-tu si sur ?
    Bien sur !!
    La droite hortogonale au plan 2D passant par le centre du cercle contient tous les centres possible dans une dimension autre que les 2D du plan

  5. A voir en vidéo sur Futura
  6. #5
    SPH

    Re : Plusieurs centres de sphere ?

    Citation Envoyé par ambrosio Voir le message
    SPH, tu parles en fait de la situation où un plan coupe une sphère. L'intersection est un cercle et tu parles du centre de la sphère comme d' "un centre" du cercle. Cette situation se transpose en toutes dimensions.
    Je crois que tu as melangé les 2 exemples. Je sais qu'il y a plusieurs centre dans la 3eme dimension pour un cercle dessiné sur un plan.
    Maintenant, passons a la dimension superieur si je puis dire :
    Existe t'il un(ou plusieurs) centre dans une 4eme dimension qui soit le centre d'une sphere ? (sphere qui a dans la dimension 3 un seul centre bien sur)

  7. #6
    invite986312212
    Invité

    Re : Plusieurs centres de sphere ?

    ce que je voulais dire, c'est que ce que tu appelles "centre d'un cercle dans la troisième dimension" n'est autre que le centre d'une sphère dont le cercle est l'intersection avec le plan qui le contient.
    Maintenant, en dimension 4, une sphère à trois dimensions (appelée S^2 ...) peut être vue comme l'intersection d'une sphère à 4 dimensions (S^3) et d'un hyperplan.

  8. #7
    SPH

    Re : Plusieurs centres de sphere ?

    Citation Envoyé par ambrosio Voir le message
    ce que je voulais dire, c'est que ce que tu appelles "centre d'un cercle dans la troisième dimension" n'est autre que le centre d'une sphère dont le cercle est l'intersection avec le plan qui le contient.
    Maintenant, en dimension 4, une sphère à trois dimensions (appelée S^2 ...) peut être vue comme l'intersection d'une sphère à 4 dimensions (S^3) et d'un hyperplan.
    Donc, une intinité de points ?

  9. #8
    invite5150dbce

    Re : Plusieurs centres de sphere ?

    Citation Envoyé par SPH Voir le message
    Bien sur !!
    La droite orthogonale au plan 2D passant par le centre du cercle contient tous les centres possible dans une dimension autre que les 2D du plan
    Et bien c'est assez flou comme raisonnement. Pour toi un cercle et un cylindre seraient identiques ?

  10. #9
    SPH

    Re : Plusieurs centres de sphere ?

    Citation Envoyé par hhh86 Voir le message
    Et bien c'est assez flou comme raisonnement. Pour toi un cercle et un cylindre seraient identiques ?
    Non je ne dis pas ca. Je dis que l'axe d'un cilyndre droit contient tous les centres d'un cercle qui serait la base du cilyndre coupé par un plan hortogonal.
    Pour l'illustré autrement, tu es sur une table et du pique ton compas au centre et tu dessines ton cerlce. Ok, rien d'original. Maintenant, peut tu piquer ton compas autre part que la ou tu viens de le piquer pour faire le MEME cercle. Reponse : oui, dans la 3eme dimension en mettant par exemple un livre sur le centre du cercle. Tu piques alors le livre de ton compas et tu l'ecarte + pour refaire un cercle qui se dessine sur la table par dessus le premier cercle.

    J'espere que la, tu a compris...

  11. #10
    invite5150dbce

    Re : Plusieurs centres de sphere ?

    Citation Envoyé par SPH Voir le message
    Non je ne dis pas ca. Je dis que l'axe d'un cilyndre droit contient tous les centres d'un cercle qui serait la base du cilyndre coupé par un plan hortogonal.
    Pour l'illustré autrement, tu es sur une table et du pique ton compas au centre et tu dessines ton cerlce. Ok, rien d'original. Maintenant, peut tu piquer ton compas autre part que la ou tu viens de le piquer pour faire le MEME cercle. Reponse : oui, dans la 3eme dimension en mettant par exemple un livre sur le centre du cercle. Tu piques alors le livre de ton compas et tu l'ecarte + pour refaire un cercle qui se dessine sur la table par dessus le premier cercle.

    J'espere que la, tu a compris...
    Mais peut-on dire que ces cercles sont identiques ?
    Non car ils n'ont pas le même centre, ils n'auront donc pas la même équation paramétrique dans l'espace.

    Enfin ta question n'est pas vraiment là, tu veux savoir si il existe un objet de dimension 4 tel que l'intersection de cet objet par un espace perpendiculaire à (Ol) d'équation l=d soit toujours une sphère de centre (0,0,0,d) et de rayon r. (où (Ol) est perpendiculaire aux trois autres axes)
    C'est analogique au cylindre dans l'espace

  12. #11
    SPH

    Re : Plusieurs centres de sphere ?

    Citation Envoyé par hhh86 Voir le message
    Mais peut-on dire que ces cercles sont identiques ?
    Non car ils n'ont pas le même centre, ils n'auront donc pas la même équation paramétrique dans l'espace.
    Je pense que tu te trompes lourdement. Un cercle est l'ensemble de points a equidistance d'un point qui deviens son centre. Meme si on choisi un autre centre dans l'autre dimension, ce cercle redeviens un cercle de rayon R avec un centre résumé au centre de dimension 2

  13. #12
    invite5150dbce

    Re : Plusieurs centres de sphere ?

    c'est ton point de vue pas le mien

  14. #13
    invite091bc544

    Re : Plusieurs centres de sphere ?

    @SPH:
    Reprenons l'exemple du livre. Dans ce cas, soit h la hauteur du livre et R le rayon du cercle (C) que l'on considère. Le cercle est défini comme intersection d'une sphère de centre la pointe du compas, et de rayon , avec le plan de la "table". Donc l'ensemble des "centres" serait l'ensemble des centres de sphères telles que leur intersection avec le plan de la "table" est le cercle (C). On doit pouvoir démontrer que c'est une droite orthogonale à la "table" et passant par le centre de (C)
    Pour généraliser, les centres d'une sphère serait la droite des centres des hypersphères telles que leur intersection avec l'espace de la sphère est la sphère.
    Mais quelle est la raison de cette question?

    @hhh86
    Ce genre de discussion ne peut pas vraiment être tranché par des arguments de "point de vue" C'est pas comme si on avait affaire à une conjecture millénaire...

  15. #14
    invitee50bceed

    Re : Plusieurs centres de sphere ?

    Non car ils n'ont pas le même centre, ils n'auront donc pas la même équation paramétrique dans l'espace.
    depuis quand une courbe de l'espace possède une éqation paramètrique unique ??

    et définition du cercle : Un cercle est une courbe plane fermée constituée des points situés à égale distance d'un point nommé centre. Donc il n'y a strictement aucune raison que le cercle ait un seul centre, si on prend un autre points équidistants de tous les points du cercle, alors il en est le centre.

  16. #15
    invite029139fa

    Re : Plusieurs centres de sphere ?

    Citation Envoyé par SPH Voir le message
    Bien sur !!
    La droite hortogonale au plan 2D passant par le centre du cercle contient tous les centres possible dans une dimension autre que les 2D du plan
    Non, la droite dont tu parles est juste l'ensemble des points équidistants de tous les points du cercle décrit, mais il n'y a qu'un centre.
    Ta réelle question est : "existe-t-il une infinité de points de l'hyperplan équidistants d'une sphère ?" je pense.

  17. #16
    invite5150dbce

    Re : Plusieurs centres de sphere ?

    Je pense qu'on s'est tous compris, ce n'est pas la peine de polémiquer là-dessus, il s'ajit juste d'une question de vocabulaire

  18. #17
    invite029139fa

    Re : Plusieurs centres de sphere ?

    Et quant à la réponse, je pense que c'est OUI.

  19. #18
    breukin

    Re : Plusieurs centres de sphere ?

    et définition du cercle : Un cercle est une courbe plane fermée constituée des points situés à égale distance d'un point du plan contenant le cercle nommé centre
    Il y a un non-dit dans cette définition, que j'ai ajouté en rouge.
    Car usuellement, on ne parle que du centre du cercle, et non d'un centre du cercle.
    Car usuellement, la définition du rayon c'est directement "la distance entre le centre du cercle et un de ses points", et non "la distance minimale entre un de ses points et ses centres". Et je n'ai jamais entendu parler "des rayons du cercle".

Discussions similaires

  1. [Physiologie] Centres nerveux supérieurs
    Par invite350f03c3 dans le forum Biologie
    Réponses: 6
    Dernier message: 07/05/2010, 17h47
  2. Centres de réalité virtuelle
    Par invitec316e987 dans le forum Technologies
    Réponses: 3
    Dernier message: 25/11/2009, 11h46
  3. Centres de gravité
    Par invitef50a85fb dans le forum Physique
    Réponses: 2
    Dernier message: 28/06/2009, 17h58
  4. Distance d'un point d'une sphère à un segment de Sphère
    Par invite1aebe580 dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 26/11/2008, 16h37
  5. PIC 16F84 – Lecture de plusieurs pin et écriture sur plusieurs pins
    Par invitef1f90160 dans le forum Électronique
    Réponses: 4
    Dernier message: 31/12/2005, 15h09