Bonjour,
Je suis étudiante en 2ème baccalauréat en vue de devenir institutrice primaire. Dans le cadre de mes études, je suis amenée à représenter mon examen de mathématique. Je suis confrontée à un problème, car mon examen se résume à beaucoup d'exercices à résoudre, mais il y en a très peu dans mon cours. Certains exercices sont faciles à inventer soi-même, mais d'autres sont quasi impossible pour ma part. J'ai cherché sur Internet et dans des livres, mais j'ai l'impression de perdre mon temps. Auriez-vous la gentillesse de me proposer des références et/ou de me faire parvenir des exercices similaires aux miens ? Inutile de vous casser la tête à les résoudre, je le ferai sauf si vous disposez des solutions, je ne veux pas abuser.
Voici les types d'exercices (intitulé + exemple(s)):
1) LES PONTS
Un propriétaire dispose d’un terrain de 10 a. De ce terrain, il vend 6 parcelles isométriques en forme de trapèze dont la hauteur est de 12 mètres et dont une base mesure 32 m.
Calculez la longueur de l’autre base de ces trapèzes sachant que, après la vente, le propriétaire ne dispose plus que de 86 a (suite de ponts).
Si à 9, on ajoute la différence entre 18 et le quotient de 60 par la somme de 8 et du tiers d’un nombre mystère, on trouve 22. Trouvez la valeur du nombre mystère.
2) LES POURCENTAGES
En 2011, un prix a augmenté de 20 %. Ensuite, en 2012, il a diminué de 15 % pour s’établir fin 2012 à 1071 €. Quel était son montant début 2011 avant qu’il ne subisse les deux modifications ?
3) LES MULTIPLES
Écrivez tous les multiples de 24 compris entre 76 000000000 et 76 000000100.
4) LES PROBLÈMES
Un traiteur livre de la compote de pomme en vrac à une école en la facturant 1,80€/kilo. De la sorte, il réalise un bénéfice de 20% sur le prix de revient. Pour préparer cette compote, il avait acheté 50 kilos de pommes à 90 cents le kilo. Il a dû jeter 16% qui étaient gâtés. Avant la cuisson, il a ajouté du sucre à raison de 30% de sucre pour 70% de fruits. La cuisson a provoqué 10% de réduction par rapport à la quantité d’origine. Calculez le prix d’un kilo de sucre.
Deux villes (x et y) sont distantes de 120 km. À 9 heures, A et C quittent x en direction d’y. A roule à dû 36 km/h et C 12 km/h. À 9h20 B quitte en moto Y en direction de x à la vitesse moyenne de 45 km/h. Dès l’instant où B et A se sont rencontrés, B s’arrête tandis que A fait demi-tour et repart à la rencontre de C. Il prend ce dernier sur sa mobylette et aussitôt ils repartent tous deux rejoindre B. Calculez à quelle heure aura lieu la réunion des trois personnages.
L’intendant d’une colonie de vacances a préparé 65 kg de bolognaise qui lui ont couté 156€. Les poivrons ont un prix au kilo inférieur de 20% à celui des tomates et 1 kg de viande coute à lui seul autant qu’un kg de tomates et de poivrons. La recette prévoit que le poids des tomates est double de celui des poivrons et que celui de la viande représente les 2/3 de celui des tomates. Calculez le prix de chaque ingrédient.
Un set didactique contient des formes géométriques (carré, rectangle, triangle). Il y a 306 pièces. Il y a 33 carrés de moins que de triangles et 24 triangles de plus que de rectangles. Recherche le nombre exact de chaque forme.
Un instituteur achète des uniformes pour ses 27 élèves. Un uniforme est constitué d’un pull pour tous et d’une jupe pour les filles ou d’un pantalon pour les garçons. Il y a 12 filles dans la classe. Le prix d’un pantalon = 20% de plus qu’une jupe. L’ensemble de tous les uniformes revient à 1970€. Le prix des 27 pulls = 3/8 des autres pièces (pantalons + jupes). Quel est le prix pour une jupe ? Pour un pantalon ? Pour un pull ?
Un vacancier a acheté en Belgique 2 cartes de GSM de même prix. En France, il en a acheté encore 2 et encore 1 en Angleterre. En France, 1 carte = 15% de moins qu’en Belgique. En Angleterre = 20% de plus qu’en Belgique. Pour ses 5 cartes, il a payé 73,50€. Combien coute une carte dans chaque pays ?
5) LES PREUVES
815 x 192 = 165 480 (preuve par 11)
6) LES INCONNUES
Déterminez la (les) valeurs des chiffres des dizaines et des centaines qui rend(ent) le nombre ci-dessous divisible par 99.
8 2 9 A B 1
7) LES FRACTIONS
(14 x ((39/7)65/22)):3)+(((18/27):5)-0,4 =
8) LA DIVISION ECRITE
De la division suivante, donnez un quotient EV approchée au dix-millième près, précisez la valeur du reste (0,001481 : 0,0721).
9) LES ECRITURES
Du rationnel dont l’écriture nombre avec virgule est donnée, écrivez un calcul, sans l’effectuer, permettant d’obtenir sa forme fractionnaire.
18,0534373737
Pour les autres types d'exercices, je dispose d'assez d'exercices.
D'avance un tout grand merci !
Emmanuelle
-----