Loi de Groupe pour les Unlabeled Necklaces?
Répondre à la discussion
Affichage des résultats 1 à 3 sur 3

Loi de Groupe pour les Unlabeled Necklaces?



  1. #1
    invite5a01804d

    Loi de Groupe pour les Unlabeled Necklaces?


    ------

    Dear,

    Let's consider the finite set of the unlabeled necklaces with 8 beads and possibly up to 8 colors UN(8,8).
    They are known as unlabeled necklaces, invariant by permutation of the beads'color and by rotation.
    There are 544 different such necklaces, named Ni, 0<i<543. Below the necklaces Ni are sorted by their minimum equivalent values in (0,8^8) :

    N0 : (00000000)=(11111111)=(...)=(7 7777777) : the only necklace with 1 color
    N1 : (00000001)=(10000000) rotation=(66666664) color permutation
    N2 : (00000011)
    N3 : (00000012)
    N4 : (00000101)
    ...
    ...
    N543 : (01234567) = the only necklace with 8 different colors

    Question : Can a group structure by associated to this set?

    I did my very best to sort the necklaces on a torus so that the torus look the most regular as possible, with the idea to use the group defined by the square-root-n of unity on the complex plane, but I failed.
    For illustration, I have attached an image of UN(6,6).Nom : Unlabeled Necklaces 6beads6colors.png
Affichages : 59
Taille : 16,7 Ko

    The bibliography is quite difficult* : The p-adic representation and the Witt vector theory seem to be good candidate for doing so...
    (maybe 7-adic here, because the first pearl of each collar is known (0) and because all the necklace but the latest have a maximum of 7 colors).

    N. Metropolis and C.-C. Rota, Witt vectors and the Algebra of Necklaces, Adv. in Math. 50
    (1983), 95–125
    Cristian Lenart, Formal Group-Theoretic Generalizations of the Necklace Algebra, Including a q-Deformation, Journal of Algebra DOI:10.1006/jabr.1997.7203

    Any experience or suggestion for further reading?

    Thank

    -----
    Dernière modification par Médiat ; 15/03/2014 à 19h17.

  2. #2
    invite179e6258

    Re : Loi de Groupe pour les Unlabeled Necklaces?

    Hi,

    since any set can be endowed with a group structure, I think you need to specify what properties you want the group operation to be compatible with.

  3. #3
    invite5a01804d

    Re : Loi de Groupe pour les Unlabeled Necklaces?

    Dear,

    Thank you very much for this answer.
    I am looking to sort the unlabeled necklaces in the most regular possible on a torus, i.e. so that only one (eventually 2) bead change between twNom : file.jpg
Affichages : 53
Taille : 91,0 Koo consecutive necklaces.
    Below is the graph matrix A of the unlabeled necklaces. Aij=1 if unlabeled necklaces i and j only differ by one bead. 0<=(i,j)<544.

    There are n=Tr(A^544) loops that may yield to define n torus.

    I am looking for the most "regular" torus. Any idea would be welcome!

Discussions similaires

  1. Réponses: 2
    Dernier message: 17/06/2012, 19h16
  2. Il n'y a plus d'administrateur pour ce groupe !
    Par bouzakhti dans le forum Internet - Réseau - Sécurité générale
    Réponses: 5
    Dernier message: 13/03/2011, 09h28
  3. Deux parents de groupe A peuvent-ils avoir un enfant du groupe o ?
    Par invite483e0f63 dans le forum Santé et médecine générale
    Réponses: 6
    Dernier message: 28/06/2010, 19h20
  4. Demande d'aide pour lecture de fichiers joints [pour groupe antimalware]
    Par inviteb430a917 dans le forum Internet - Réseau - Sécurité générale
    Réponses: 3
    Dernier message: 26/05/2007, 09h48