fonction échelon unitaire
Répondre à la discussion
Affichage des résultats 1 à 11 sur 11

fonction échelon unitaire



  1. #1
    inviteaeeb6d8b

    fonction échelon unitaire


    ------

    Bonjour,

    avec un ami on a mis au point (c'est un bien grand mot !) une fonction échelon unitaire ie qui fait 0 pour tout réel strictement négatif, et 1 pour tout réel strictement positif.

    Je voulais savoir si elle est connue des matheux d'abord, si elle a une quelconque utilité en physique par exemple, et comme petit jeu je vous propose de la chercher.

    Le principe est de ne pas la définir sur deux intervalles (c'est trop facile), puis de l'optimiser (limiter les fractions, puissances...).
    Elle est composée de fonctions usuelles du type inverse/puissance... uniquement !

    amusez vous bien

    -----

  2. #2
    invitec314d025

    Re : fonction échelon unitaire

    Ca s'appelle usuellement la fonction de Heaviside, et oui elle est utilisée en physique.
    Si tu ne te soucies pas qu'elle ne soit pas définie en 0, tu peux prendre:


  3. #3
    invite6b1e2c2e

    Re : fonction échelon unitaire

    De toute façon, cette fonction n'est pas continue, donc, même si je ne sais pas comment est défini la fonction de Romain29, elle a forcément une singularité !

    PS : C'est aussi une fonction connue en maths, hein !

    __
    rvz

  4. #4
    invite88ef51f0

    Re : fonction échelon unitaire

    Salut,
    La fonction de Heaviside est particulièrement utile en physique en traitement du signal. C'est une des fonctions de base dans ce domaine...

  5. A voir en vidéo sur Futura
  6. #5
    inviteaeeb6d8b

    Re : fonction échelon unitaire

    Je connaissais la fonction d'Heavyside pour une de ses applications en SI, mais j'ignorais qu'elle était définie comme l'a fait Matthias, et qu'elle avait une si grande utilité.

    En pratique, on se moque de la formule qui permet de l'obtenir non ?

    Sinon, la forme que j'avais était celle là.

    A part, que la valeur absolue n'était pas assez standart et qu'on l'avait remplacé par racine de x²

    je trouve que c'est un exercice facile mais rigolo !

    Pour ceux qui s'ennuient, on peut en chercher plein dans le même style !

    0 sur ]-l'inf ; 1] ; x sur ]1 ; + l'inf[

    merci pour les réponses

  7. #6
    invitec314d025

    Re : fonction échelon unitaire

    Citation Envoyé par Romain29
    j'ignorais qu'elle était définie comme l'a fait Matthias
    Non on ne s'amuse pas à la définir comme je l'ai écrit, ça ne servirait à rien. Ce n'était que pour répondre à ton message. Il est bien plus simple de la définir comme valant 0 sur ]-infini;0[, 1 sur ]0;+ifnini[ et de lui donner une valeur arbitraire en 0.

  8. #7
    inviteaeeb6d8b

    Re : fonction échelon unitaire

    OK, donc en pratique on se moque de la formule explicite !

  9. #8
    invite6b1e2c2e

    Re : fonction échelon unitaire

    En fait, la formule EST explicite.

    __
    rvz

  10. #9
    inviteaeeb6d8b

    Re : fonction échelon unitaire

    Citation Envoyé par rvz
    En fait, la formule EST explicite.

    __
    rvz
    Argh ... je suis sûr que tu m'avais compris

  11. #10
    invite4793db90

    Re : fonction échelon unitaire

    Salut,

    c'était le débat à la fin du XVIIIème de savoir si une fonction "définie par morceaux" était une "vraie" fonction, c'est-à-dire une fonction donnée par une formule et une seule. La question ne date pas d'hier!

    Cordialement.

  12. #11
    invitec61d261b

    Re : fonction échelon unitaire

    Bonjour
    j'ai besoin d'aide car je me trouve vraiment bloquée a vous les matheux de m'aider svp :
    bon j'ai la fonction suivante :
    h(t) = h0*U(t-t1) %U(t-t1) est la fonction échelon décalée a t1
    les questions :
    1- si je veut obtenir h^(3/2) alors je l'écrit comme ca :

    h^(3/2)= (h0^(3/2))*(U(t-t1)^(3/2))??
    2-je veut calculer l’intégrale de cette fonction donc je me trouve censée de calculer cet intégrale :
    f= intégrale((t^(3/2))* exp(-a*t)) les bornes de l’intégrale sont [0 20]; avec a: constante et t est le temps (variable )
    j'ai essayé de faire cette integrale avec matlab mais il m'affiche cette message d'erreur

    Warning: Explicit integral could not be found.

    ans =

    piecewise([not a in R_, pi^(1/2)/(2*a^(3/2)) - (pi^(1/2)*erfc((20*a)^(1/2)))/(2*a^(3/2)) - (2*5^(1/2))/(a*exp(20*a))], [Otherwise, int(x^(1/2)/exp(a*x), x = 0..20)])
    alors pouvez vous m'aider svp
    merci

Discussions similaires

  1. vecteur unitaire
    Par invite829bf453 dans le forum Mathématiques du collège et du lycée
    Réponses: 5
    Dernier message: 01/04/2016, 11h53
  2. transformée de laplace utilisation de la fct echelon
    Par invite40900d3d dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 08/10/2007, 16h42
  3. Opérateur unitaire
    Par invite7e4ae2af dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 25/02/2007, 14h32
  4. Fonction échelon...
    Par invite3569df15 dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 22/03/2005, 00h18