Classification des nombres premiers
Répondre à la discussion
Affichage des résultats 1 à 9 sur 9

Classification des nombres premiers



  1. #1
    invite407a6796

    Classification des nombres premiers


    ------

    Bonjour

    J'ai récemment mis au point une classification des nombres premiers. J'ai réalisé un site :
    http://reismann.free.fr
    J'attends des retours sur cette classification ou des échanges sur le sujet.
    A+

    Rémi EISMANN

    -----

  2. #2
    invite3d7be5ae

    Re : Classification des nombres premiers

    Bonjour

    Comment tu fais pour calculer le poids et le niveau d'un nombre premier en connaissant le suivant?

    Pole.

  3. #3
    invite4793db90

    Re : Classification des nombres premiers

    Salut et bienvenue,

    message déplacé en maths.

    Pour la modération.

  4. #4
    invite407a6796

    Re : Classification des nombres premiers

    Pour calculer le poids et le niveau, il faut factoriser l(n)=k(n)*level(n)
    Je vais bientot mettre à disposition les algos mais si tu veux le code tu peux regarder sur l'OEIS

  5. A voir en vidéo sur Futura
  6. #5
    invite407a6796

    Re : Classification des nombres premiers

    et comme l(n)=prime(n)-g(n) on a besoin de connaitre le saut donc prime(n+1).

  7. #6
    invite3d7be5ae

    Re : Classification des nombres premiers

    Il peut y avoir beaucoup de possibilité de factorisation, non?

    Suite crible ou suite des poids : k(n) = plus petit k tel que
    prime(n)=g(n) mod k,
    0 si un tel k n'existe pas.
    a=b mod 1, non?

    A moins de calculer le k en essayant toutes les possibilités, je ne vois pas comment faire...

    Pole.

  8. #7
    invite407a6796

    Re : Classification des nombres premiers

    Salut

    Effectivement il faut essayer plusieurs possibilités mais elles ne sont pas si nombreuses (du moins au début). k (le poids) est un diviseur de l. Il faut donc factoriser l et essayer les différents diviseurs en commençant par le plus petit. Je pense que l'on peut faire un crible aussi.
    A+

  9. #8
    invite407a6796

    Re : Classification des nombres premiers

    Et si l n'a qu'un facteur, le niveau est égal à 1 (attention avec les niveaux 0 sur ce point).

  10. #9
    invite407a6796

    Re : Classification des nombres premiers

    Bonjour

    La question de Pole m'a permi de découvrir une incohérence dans les définitions. Je les ai donc corrigées en revenant à l'utilisation de la fontion mod(a;b) qui retourne le reste de la division euclidienne de a par b. C'est d'ailleurs comme ça que j'ai commencé à calculer la suite, avec un tableur. Cela n'enlève rien à la classification mais cela montre à quel point j'ai besoin d'aide pour la formulation mathématique de la classification.

    Rémi EISMANN

Discussions similaires

  1. Démonstration de l'ensemble des Nombres premiers
    Par invite43bf475e dans le forum Mathématiques du collège et du lycée
    Réponses: 34
    Dernier message: 29/12/2015, 08h01
  2. Graphs de la classification des nombres premiers
    Par invite407a6796 dans le forum Mathématiques du supérieur
    Réponses: 0
    Dernier message: 28/10/2006, 15h44
  3. classification des nombres
    Par invite7f5e7850 dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 01/10/2006, 00h52
  4. Ensemble des nombres premiers
    Par invite6644da5a dans le forum Mathématiques du supérieur
    Réponses: 21
    Dernier message: 12/11/2005, 20h01