Théoreme de Malus.
Répondre à la discussion
Affichage des résultats 1 à 8 sur 8

Théoreme de Malus.



  1. #1
    invite42abb461

    Théoreme de Malus.


    ------

    Bonjour,
    je voudrais savoir ou est l'erreur dans le raisonnement suivant :
    je considere deux rayons differents traversant le dispositif suivant :
    http://www.chimix.com/an5/concours5/images5/plp2967.gif

    Pour calculer leur différence de marche on trace généralement le projeté orthogonal de Fb sur le premier rayon, puis le projeté orthogonal de Fa sur le second rayon.

    Mais si je ne trace que l'un de ces projetés que j'appelle H(projeté de Fb sur le premier rayon), j'obtiens que la différence de marche est :

    (SH) + (HM)- (SFb) - (FbM) = 0 car de toute facon la droite (FbH) est orthogonale aux rayons, qu'ils viennent de gauche ou de droite...
    Ou est l'erreur ?
    Merci d'avance.

    -----

  2. #2
    inviteaa0ade65

    Re : Théoreme de Malus.

    Citation Envoyé par Gpadide Voir le message
    Bonjour,
    je voudrais savoir ou est l'erreur dans le raisonnement suivant :
    je considere deux rayons differents traversant le dispositif suivant :
    http://www.chimix.com/an5/concours5/images5/plp2967.gif

    Pour calculer leur différence de marche on trace généralement le projeté orthogonal de Fb sur le premier rayon, puis le projeté orthogonal de Fa sur le second rayon.

    Mais si je ne trace que l'un de ces projetés que j'appelle H(projeté de Fb sur le premier rayon), j'obtiens que la différence de marche est :

    (SH) + (HM)- (SFb) - (FbM) = 0 car de toute facon la droite (FbH) est orthogonale aux rayons, qu'ils viennent de gauche ou de droite...
    Ou est l'erreur ?
    Merci d'avance.
    Ce qui nous aiderait dans un premier temps c'est que tu donnes une figure avec tes constructions. On y verrait plus clair !!

    En imaginant ce que tu as pu (du ?) faire je pense que ton erreur est la suivante : C'est pour une source donnée que les surfaces d'ondes sont orthogonoales aux rayons lumineux. Qui dit rayons lumineux dit trajectoire suivant les lois de l'optique géométrique. Or quand tu fais partir d'une des fentes un rayon incliné ce n'est pas un rayon de l'optique géométrique. C'est par diffraction (optique physique) que l'on peut s'intéresser à ce rayon. Et le principe d'Huygens-Fresnel te dit qu'il faut prendre d'autres source sur ta fente. Je ne sais pas si c'est très clair (mais sans dessin...)

  3. #3
    invite42abb461

    Re : Théoreme de Malus.

    Comment on fait pour faire les dessins ici ?

  4. #4
    inviteaa0ade65

    Re : Théoreme de Malus.

    Je pense qu'il faut que tu prépares le schémas avec ton logiciel de dessin préféré, et que tu le mettes en pièce jointe à ton message (cf. mode d'emploi du forum en haut de la fenêtre...)

  5. A voir en vidéo sur Futura
  6. #5
    invite42abb461

    Re : Théoreme de Malus.

    Bon j'aurais pas le temps mais je pense que ce que tu m'expliques c'est ce qui me bloquait. Mais ca veut dire que le théoreme de malus ne s'applique que pour l'optique géométrique ?

  7. #6
    inviteaa0ade65

    Re : Théoreme de Malus.

    En fait le théorème de Malus fait le lien entre surface d'onde et la direction locale de propagation de l'énergie lumineuse. Ce n'est donc pas strictement valable que dans le cadre de l'optique géométrique.

    Cependant si on introduit la formulation utilisant les rayons lumineux et que l'on raisonne avec, comme c'est un concept de l'optique géométrique alors il faut être cohérent dans sa démarche ! Et le changement de direction "d'un rayon lumineux" à la traversée d'un trou, ce n'est pas de l'optique géométrique !

  8. #7
    invite42abb461

    Re : Théoreme de Malus.

    Oui mais dans ce cas il n'ya pas de raison que pour une lentille convergente ( qui donne aussi un changement de direction), le chemin optique soit invariant d'un point a son conjugué. J'espere que tu vois ce qui me bloque

  9. #8
    inviteaa0ade65

    Re : Théoreme de Malus.

    La différence c'est que le changement de direction est déterminée par le "fonctionnement" de la lentille dans le cadre de l'optique géométrique !

    Alors qu'à la sortie des trous c'est toi qui décide de t'intéresser parmis toutes les directions possibles à l'une d'entre-elle, indépendant de toute considération d'optique géométrique !

Discussions similaires

  1. Théorème
    Par inviteba93d44f dans le forum Mathématiques du supérieur
    Réponses: 16
    Dernier message: 16/12/2007, 19h13
  2. théorème
    Par invitedcb8d9bb dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 25/04/2007, 20h20
  3. Loi de Malus + polariseur linéaire idéal
    Par invited4d95a33 dans le forum Physique
    Réponses: 5
    Dernier message: 15/01/2007, 19h29
  4. loi de malus et dupin
    Par invite9f60ab2b dans le forum Physique
    Réponses: 7
    Dernier message: 03/10/2004, 12h42
  5. démonstration de la loi de malus
    Par inviteb7f520a5 dans le forum Physique
    Réponses: 2
    Dernier message: 02/05/2004, 09h05