Répondre à la discussion
Affichage des résultats 1 à 7 sur 7

Expression de la vitesse



  1. #1
    Univers78

    Expression de la vitesse

    Bonsoir,

    Je suis en train de faire un exercice, où un corps part d'une hauteur H0, avec une vitesse nulle, et effectue ensuite une descente puis un "looping", je ne m'attarde pas trop sur la description, le dessin ci-joint parle de lui même !

    Je dois démontrer que la vitesse du corps, de masse négligeable, s'exprime comme indiquée par la formule en haut du graphe.

    Seulement moi j'arrive à ceci uniquement : racine de 2g[H0-H(x)]. En d'autres termes, je ne parviens pas à obtenir le dénominateur... Je suppose que mon raisonnement pose problème ? J'ai écris que mgH0 = mV^2/2 + mgH(x), et de là j'ai isolé la vitesse..

    Ma question : qu'est ce qui cloche ? Qu'ai je oublié, vu que je n'arrive pas à obtenir l'expression.

    Merci d'avance

    -----

    Images attachées Images attachées

  2. Publicité
  3. #2
    LPFR

    Re : Expression de la vitesse

    Bonjour.
    x' n'est pas la vitesse du corps. Mais sa vitesse horizontale.
    Et le dénominateur est de la forme 1 + tg²(thêta) . Cette forme figure dans les identités trigonométriques remarquables.
    Trouvez lequel est l'angle thêta dans le dessin.
    Le problème est moins pourri si on le résout en fonction de l'angle de la position du mobile.
    Au revoir.

  4. #3
    Univers78

    Re : Expression de la vitesse

    Bonsoir LPFR

    Merci pour la précision, je voyais dh/dx comme une dérivée.. Pas très logique. Je comprends mieux le truc je pense maintenant. Je vais essayer de m'arranger, l'angle thêta je crois savoir où il est. Je te tiens au courant, si je bloque.

    Merci bien.

  5. #4
    Univers78

    Re : Expression de la vitesse

    Re-Bonsoir

    Après avoir eu le temps de revenir sur cet exercice, je crois avoir réussi à trouver l'expression.
    Voici comment j'ai vu le problème : (image en pièce jointe).

    De cette façon j'arrive à l'expression demandée sans problème, en exprimant Thétha avec dx et dh, et Vx en fonction de V et cos Thétha.

    Qu'en penses-tu ?

    Merci d'avance.

    P.S : l'image est un peu petite, mais on comprend que Vx et dx sont "confondus".. La norme uniquement change.
    Images attachées Images attachées

  6. #5
    LPFR

    Re : Expression de la vitesse

    Bonjour.
    Oui. C'est bon.
    Au revoir.

  7. A voir en vidéo sur Futura
  8. #6
    joel_5632

    Re : Expression de la vitesse

    Citation Envoyé par Univers78 Voir le message
    Bonsoir LPFR

    Merci pour la précision, je voyais dh/dx comme une dérivée.. Pas très logique.
    si dh/dx est bien une dérivée.
    Et la dérivée est égale à ou est l'angle entre la tangente à la courbe h(x) et l'horizontale

  9. Publicité
  10. #7
    Univers78

    Re : Expression de la vitesse

    Oui exact !

    Merci à vous deux.

    A bientôt.

Sur le même thème :

Discussions similaires

  1. expression
    Par snbf dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 27/09/2011, 04h37
  2. expression de constante de vitesse et d'avancement
    Par zippo86 dans le forum Chimie
    Réponses: 3
    Dernier message: 06/02/2011, 16h37
  3. Réponses: 8
    Dernier message: 24/09/2010, 21h44
  4. expression de I
    Par NIiCcOoWw dans le forum Physique
    Réponses: 3
    Dernier message: 09/06/2010, 19h42
  5. Expression littérale mouvement et vitesse
    Par tib666 dans le forum Physique
    Réponses: 1
    Dernier message: 17/10/2009, 17h15