Répondre à la discussion
Affichage des résultats 1 à 5 sur 5

oscillation non symetrique



  1. #1
    piranha007

    oscillation non symetrique


    ------

    Bonjour,
    J'ai un petit soucis, je désir établir l'équation d'un oscillateur dont ces oscillations ne sont pas symétrique, sa valeur maximale est A et minimale est B.
    un peu d'aide et Merci.

    -----

  2. Publicité
  3. #2
    LPFR

    Re : oscillation non symetrique

    Bonjour.
    Avec le peu de d'indications que vous donnez, les solutions sont (presque) infinies.
    La plus immédiate, par exemple, est de changer l'origine des coordonnées. Ou la référence du zéro V si c'est un oscillateur électrique.
    Au revoir.

  4. #3
    piranha007

    Re : oscillation non symetrique

    Oui désolé, je ne voulais pas détailler, bon voilà j’explique mon problème, j'ai un point matériel M à la position A par rapport à l'axe (oy) à t=0, à t=t1 il se trouve à la position B tjrs par rapport à l'axe (oy), et pas de variation par rapport à (ox).
    Les positions A et B ne sont pas symétrique par rapport à l'axe (ox), le point M oscille entre ces deux position sans amortissement.
    Je sais que c'est simple parfois on s'y perd

    l'équation c'est celle là : y(t)=C1 cos(wt) + C2 sin(wt) mais je ne sais pas comment interpréter les deux position A et B avec les conditions initiales

    Merci pour votre aide.

  5. #4
    LPFR

    Re : oscillation non symetrique

    Re.
    Si l'équation est celle que vous dites, je ne vois pas ce que vient faire la coordonnée 'x'.
    L'oscillation est symétrique par rapport à la position y = 0.
    Seulement, le mobile n'est pas à y = 0 pour t = 0. Conséquence du choix des conditions de départ.
    A+

  6. #5
    piranha007

    Re : oscillation non symetrique

    oui c'est bon, j'ai trouver, merci pour votre aide. il faut résonner avec l'angle (theta=w*t), les Conditions sont pour thet=0 et theta=pi/2.
    Dernière modification par piranha007 ; 27/02/2014 à 17h55.

  7. A voir en vidéo sur Futura

Sur le même thème :

Discussions similaires

  1. D'une matrice symétrique positive à une matrice symétrique positive semi-def negative
    Par julien_4230 dans le forum Mathématiques du supérieur
    Réponses: 15
    Dernier message: 09/12/2013, 17h23
  2. oscillation
    Par hashou dans le forum Physique
    Réponses: 1
    Dernier message: 19/05/2009, 18h01
  3. Oscillation
    Par alexandrarasta dans le forum Physique
    Réponses: 2
    Dernier message: 16/01/2007, 18h07
  4. oscillation
    Par iwio dans le forum Électronique
    Réponses: 4
    Dernier message: 04/02/2006, 22h02
  5. Oscillation libre et oscillation.
    Par julien_4230 dans le forum Physique
    Réponses: 3
    Dernier message: 23/12/2005, 12h09